Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (4): 449-458    DOI: 10.3785/j.issn.1008-9209.2019.09.191
Food sciences     
Comparison of three different methods for adsorption of aroma compounds for green tea, yellow tea and white tea
Jiaojiao CHEN1(),Chengyin LU2,Guoqing WANG2,Liyan CHEN2,Huiling LIANG1(),Yingbin ZHANG2()
1.College of Agriculture and Food Science, Zhejiang A & F University/Zhejiang Provincial Key Laboratory of Agricultural Product Quality Improvement Technology, Hangzhou 311300, China
2.Tea Research Institute, Chinese Academy of Agricultural Sciences/Tea Quality Inspection and Supervision Center, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
Download: HTML   HTML (   PDF(1272KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Combined with gas chromatography-mass spectrometer (GC-MS), we compared the adsorption characteristics and laws of aroma compounds for green tea, yellow tea and white tea by using three methods, i.e. headspace solid-phase micro-extraction (HS-SPME), headspace stir bar sorptive extraction (HS-SBSE), and Tenax TA. Under the same ratio of tea to water, equilibrium time, extraction temperature and adsorption time, the enrichment effect of the three methods on aroma compounds for nine tea samples was analyzed. The results showed that the absorption capacity of Tenax TA was the highest; HS-SBSE was the second; and HS-SPME was the lowest. HS-SPME and HS-SBSE showed better enrichment effect for terpene and low water-soluble compounds, while Tenax TA showed better adsorption capacity of aldehyde and could trap some of the water-soluble and highly volatile substances easily. In addition, compared with Tenax TA, the relative content of long carbon chain compounds such as linalool, linalool oxide and cis-3-hexenyl hexanoate extracted by HS-SPME and HS-SBSE was significantly higher (P<0.05), while the relative content of short carbon chain compounds including 2-methylbutyraldehyde and 1-penten-3-ol was lower (P<0.05). In conclusion, the analysis results of Tenax TA method is more authentic in aroma composition, in consideration of a strong competition effect during HS-SPME and HS-SBSE extraction.



Key wordsheadspace solid-phase micro-extraction      headspace stir bar sorptive extraction      Tenax TA adsorption      tea aroma     
Received: 19 September 2019      Published: 11 September 2020
CLC:  TQ 654  
Corresponding Authors: Huiling LIANG,Yingbin ZHANG     E-mail: 1639454215@qq.com;hlliang@zafu.edu.cn;yanying7217@sina.com
Cite this article:

Jiaojiao CHEN,Chengyin LU,Guoqing WANG,Liyan CHEN,Huiling LIANG,Yingbin ZHANG. Comparison of three different methods for adsorption of aroma compounds for green tea, yellow tea and white tea. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 449-458.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.09.191     OR     http://www.zjujournals.com/agr/Y2020/V46/I4/449


3种方法吸附绿茶、黄茶与白茶香气成分的比较

结合气相色谱-质谱(gas chromatography-mass spectrometer, GC-MS)法,比较顶空固相微萃取(headspace solid-phase micro-extraction, HS-SPME)、顶空搅拌子吸附萃取(headspace stir bar sorptive extraction, HS-SBSE)、Tenax TA 3种方法吸附绿茶、黄茶与白茶香气成分的特点与规律,分析3种方法对供试的9个茶样香气成分的富集效果。结果表明:在相同的茶水比、平衡时间、萃取温度、吸附时间下,Tenax TA的吸附量最高,HS-SBSE其次,HS-SPME最低;HS-SPME与HS-SBSE对茶叶香气成分中的烯类物质和低水溶性物质有良好的富集能力;Tenax TA对醛类物质的富集效果更好,能捕集到部分易溶于水和极易挥发类物质。此外,HS-SPME和HS-SBSE吸附的芳樟醇及其氧化物和顺-己酸-3-己烯酯等长C链化合物的相对含量显著高于Tenax TA(P<0.05),而2-甲基丁醛和1-戊烯-3-醇等短C链化合物的相对含量显著低于Tenax TA(P<0.05)。考虑到HS-SPME与HS-SBSE吸附时存在一定的竞争效应,因此,Tenax TA吸附结果在反映香气化合物组成上更具真实性。


关键词: 顶空固相微萃取,  顶空搅拌子吸附萃取,  Tenax TA吸附,  茶叶香气 

茶样

Tea sample

方法

Method

含硫化合物

Sulfur-containing compound

醇类

Alcohol

醛类

Aldehyde

酮类

Ketone

酸类

Acid

酯类

Ester

烯类

Terpene

杂环类

Heterocycle

总计

Total

龙井茶

LJ

HS-SPME21797010181073
HS-SBSE215106015181480
Tenax TA114149013151480

开化龙顶

KHLD

HS-SPME11681201619981
HS-SBSE1211515016161296
Tenax TA1221711012141289

径山茶

JS

HS-SPME2169608171068
HS-SBSE12598012191185
Tenax TA217156010121274

碧螺春

BLC

HS-SPME11912706161677
HS-SBSE31912706181479
Tenax TA22015507101877

安吉白茶

AJBC

HS-SPME11312130713766
HS-SBSE121191509101489
Tenax TA22019150981285

白毫银针

BHYZ

HS-SPME12013136813882
HS-SBSE323161486101090
Tenax TA4272411548992

白牡丹

BMD

HS-SPME12013136813781
HS-SBSE3251514869888
Tenax TA4262511648993

莫干黄芽

MGHY

HS-SPME11491307121167
HS-SBSE2191815012101793
Tenax TA21925100361075

蒙顶黄芽

MDHY

HS-SPME1189900171165
HS-SBSE11891101131871
Tenax TA215141301121774
Table 1 Number of aroma compounds for nine tea samples adsorbed by three methods

茶样

Tea sample

方法

Method

C1~C5C6~C10C11~C15

总计

Total

龙井茶

LJ

HS-SPME5472173
HS-SBSE6512380
Tenax TA12521680

开化龙顶

KHLD

HS-SPME7482681
HS-SBSE8652396
Tenax TA12591889

径山茶

JS

HS-SPME5461768
HS-SBSE6562385
Tenax TA9521374

碧螺春

BLC

HS-SPME6502177
HS-SBSE9472379
Tenax TA14501377

安吉白茶

AJBC

HS-SPME4451766
HS-SBSE8612089
Tenax TA14571485

白毫银针

BHYZ

HS-SPME4641482
HS-SBSE1269990
Tenax TA1569892

白牡丹

BMD

HS-SPME4631481
HS-SBSE1267988
Tenax TA1669893

莫干黄芽

MGHY

HS-SPME6441767
HS-SBSE9661893
Tenax TA15501075

蒙顶黄芽

MDHY

HS-SPME5372365
HS-SBSE5471971
Tenax TA18431374
Table 2 Number of aroma compounds in three carbon chain ranges for nine tea samples adsorbed by three methods
Fig. 1 Total peak area of aroma compounds for nine tea samples adsorbed by three methodsHS-SPME: Headspace solid-phase micro-extraction; HS-SBSE: Headspace stir bar sorptive extraction.The different lowercase letters above the bars show significant differences among the different methods for the same tea sample at the 0.05 probability level; n=3.
Fig. 2 Relative content of aroma compounds for nine tea samples adsorbed by three methods
Fig. 3 Relative content of aroma compounds in three carbon chain ranges for nine tea samples adsorbed by three methodsHS-SPME: Headspace solid-phase micro-extraction; HS-SBSE: Headspace stir bar sorptive extraction.The different lowercase letters above the bars show significant differences among the different methods for the same tea sample at the 0.05 probability level; n=3.
 
[1]   LEE J, CHAMBERS D H, CHAMBERS E, et al. Volatile aroma compounds in various brewed green teas. Molecules, 2013,18:1024-1041. DOI:10.3390/molecules180810024
doi: 10.3390/molecules180810024
[2]   王峰,曹福亮,张洪娟.SPME法与SDE法测定雨花茶香气成分比较.林业科技开发,2010,24(3):123-125.
WANG F, CAO F L, ZHANG H J. A comparison of the aromatic components from Yuhua tea extracted by SPME and SDE. China Forestry Science and Technology, 2010,24(3):123-125. (in Chinese with English abstract)
[3]   ZHU J C, CHEN F, WANG L Y, et al. Comparison of aroma-active volatiles in Oolong tea infusions using GC-olfactometry, GC-FPD, and GC-MS. Journal of Food Chemistry, 2015,63(34):7499-7510. DOI:10.1021/acs.jafc.5b02358
doi: 10.1021/acs.jafc.5b02358
[4]   QI D D, MIAO A Q, CAO J X, et al. Study on the effects of rapid aging technology on the aroma quality of white tea using GC-MS combined with chemometrics: in comparison with natural aged and fresh white tea.Journal of Food Chemistry, 2018,265:189-199. DOI:10.1016/j.foodchem.2018.05.080
doi: 10.1016/j.foodchem.2018
[5]   PERESTRELO R, NOGUEIRA J M F, CAMARA J S. Potentialities of two solventless extraction approaches-stir bar sorptive extraction and headspace solid-phase microextraction for determination of higher alcohol acetates, isoamyl esters and ethyl esters in wines. Talanta, 2010,80(2):622-630. DOI:10.1016/j.talanta.2009.07.038
doi: 10.1016/j.talanta.2009.07.038
[6]   CASTRO L F, ROSS C F. Determination of flavour compounds in beer using stir-bar sorptive extraction and solid-phase microextraction. Journal of the Institute of Brewing, 2015,121(2):197-203. DOI:10.1002/jib.219
doi: 10.1002/jib.219
[7]   GUERREROE D, MARíNR N, MEJíAS R C, et al. Optimisation of stir bar sorptive extraction applied to the determination of volatile compounds in vinegars. Journal of Chromatography A, 2006,1104(1/2):47-53. DOI:10.1016/j.chroma.2005.12.006
doi: 10.1016/j.chroma.2005.12.006
[8]   雷春妮,周围,蒋玉梅,等.热脱附-气相色谱/质谱联用分析鲜食玉米香气成分.食品工业科技,2014,35(2):71-75.
LEI C N, ZHOU W, JIANG Y M, et al. Thermal desorption coupled to GC-MS for analyzing aroma components in fresh corn. Journal of Science and Technology of Food Industry, 2014,35(2):71-75. (in Chinese with English abstract)
[9]   赵玥,肖成杰,蔡宝国,等.气相色谱-质谱法中4种不同捕集方式对茶叶香气成分测定的影响.食品科学,2011,32(16):283-289.
ZHAO Y, XIAO C J, CAI B G, et al. Influences of four different trap methods on GC-MS determination of aromatic components of tea. Journal of Food Science, 2011,32(16):283-289. (in Chinese with English abstract)
[10]   王梦琪,朱荫,张悦,等.搅拌棒吸附萃取结合气相色谱-质谱联用技术分析西湖龙井茶的挥发性成分.食品科学,2020,41(4):140-148. DOI:10.7506/spkx1002-6630-20190325-322
WANG M Q, ZHU Y, ZHANG Y, et al. Analysis of volatile compounds in “XihuLongjing” tea by stir bar sorptive extraction combined with gas chromatography-mass spectro-metry. Food Science, 2020,41(4):140-148. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-201903
[11]   周春娟,郭守军,庄东红,等.SDE-GC-MS与P&T-Tenax TA-GC-MS提取分析不同香型凤凰单丛茶香气比较.食品科学,2015,36(18):137-142. DOI:10.7506/spkx1002-6630-201518025
ZHOU C J, GUO S J, ZHUANG D H, et al. Comparison of simultaneous distillation extraction (SDE) with purge and trap thermal desorption (P&T-Tenax TA) for the analysis of aroma compounds in tea made from two cultivars of FenghuangDancong by gas chromatography-mass spectrometry (GC-MS). Food Science, 2015,36(18):137-142. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-201518025
[12]   颜鸿飞,王美玲,白秀芝,等.湖南茯砖茶香气成分的HS-SPME-GC-TOF-MS分析.食品科学,2014,35(22):176-180. DOI:10.7506/spkx1002-6630-201422033
YAN H F, WANG M L, BAI X Z, et al. Analysis of aroma composition in Hunan Fuzhuan tea by solid-phase microex-traction combined with gas chromatography-time of flight-mass spectrometry. Food Science, 2014,35(22):176-180. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-201422033
[13]   Lü S D, WUY S, SONG Y Z, et al. Multivariate analysis based on GC-MS fingerprint and volatile composition for the quality evaluation of Pu-Erh green tea. Journal of Food Analytical Methods, 2015,8(2):321-333. DOI:10.1007/s12161-014-9900-0
doi: 10.1007/s12161-014-9900-0
[14]   林杰,陈莹,施元旭,等.保留指数在茶叶挥发物鉴定中的应用及保留指数库的建立.茶叶科学,2014,34(3):261-270.
LIN J, CHEN Y, SHI Y X, et al. Application of retention index on volatile compound identification of tea and development of retention index database. Journal of Tea Science, 2014,34(3):261-270. (in Chinese with English abstract)
[15]   YI Z Y, FENG T, ZHUANG H N, et al. Comparison of different extraction methods in the analysis of volatile compounds in pomegranate juice. Journal of Food Analytical Methods, 2016,9(8):2364-2373. DOI:10.1007/s12161-016-0410-0
doi: 10.1007/s12161-016-0410-0
[16]   BICCHI C, IORI C, RUBIOLO P, et al. Headspace sorptive extraction (HSSE), stir bar sorptive extraction (SBSE), and solid phase microextraction (SPME) applied to the analysis of roasted Arabica coffee and coffee brew. Journal of Agricultural and Food Chemistry, 2002,50(3):449-459. DOI:10.1021/jf010877x
doi: 10.1021/jf010877x
[1] Attached Table 1-3 Download
[1] QI Dandan, CHEN Wei, MIAO Aiqing, WANG Wenwen, PANG Shi, MA Chengying. Effects of rapid ageing technology on the aroma quality of white tea using gas chromatographymass spectrometry/mass spectrometry combined with chemometrics[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 704-710.