Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (4): 400-406    DOI: 10.3785/j.issn.1008-9209.2019.09.091
Biological sciences & biotechnology     
Transcriptomic difference analysis of Meyerozyma guilliermondii in response to salt stress
Xuan CAO(),Xiaodong ZHENG()
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China
Download: HTML   HTML (   PDF(2484KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Previous work proved that a strain of Meyerozyma guilliermondii isolated from the Xisha islands of Hainan Province had good salt-tolerant ability which could grow under 12% NaCl stress culture condition. Based on the above results, the transcriptome sequencing of the straincultured under salt stress and non-salt stress for 24 h was constructed by Illumina HiSeqTM in this study. The results were as follows: the two samples yielded 1 027 significantly differential expression genes, of which 458 genes were up-regulated and 569 genes were down-regulated. According to the gene ontology (GO) functional annotations, the differential expression genes of M. guilliermondii treated with salt stress were mainly concentrated on the classification of biological process, in which nucleotide metabolism, sugar metabolism and coenzyme metabolism genes were greatly different. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differential expression genes showed that the most of the enrichment pathways were related to cell division and metabolism, which were corresponding to the GO enrichment results. The above results can provide scientific basis for further biological research on the effect of the growth of M. guilliermondii under salt stress.



Key wordsMeyerozyma guilliermondii      salt stress      transcriptomics      high-throughput sequencing     
Received: 09 September 2019      Published: 11 September 2020
CLC:  Q 939.9  
Corresponding Authors: Xiaodong ZHENG     E-mail: 452353248@qq.com;xdzheng@zju.edu.cn
Cite this article:

Xuan CAO,Xiaodong ZHENG. Transcriptomic difference analysis of Meyerozyma guilliermondii in response to salt stress. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 400-406.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.09.091     OR     http://www.zjujournals.com/agr/Y2020/V46/I4/400


盐胁迫培养下季也蒙毕赤酵母的转录组学差异分析

在本实验室从海南省西沙群岛海沙里分离出1株季也蒙毕赤酵母(Meyerozyma guilliermondii),并证实该酵母菌株有较好的耐盐性,在12% NaCl胁迫培养条件下仍可生长的基础上,本文通过Illumina HiSeqTM高通量测序技术对经盐胁迫培养与非盐胁迫培养24 h的M. guilliermondii进行转录组测序比较。结果表明:2组样品共有 1 027个显著性差异表达基因,其中458个基因表达上调,569个基因表达下调。通过基因本体(gene ontology, GO)功能注释发现,经盐胁迫处理后M. guilliermondii的差异表达基因主要富集在生物过程分类中,其中核苷酸代谢、糖代谢及辅酶代谢基因产生较大差异。对差异基因进行京都基因与基因组百科全书数据库(Kyoto Encyclopedia of Genes and Genomes, KEGG)通路富集分析,发现大部分富集通路都与细胞分裂和代谢有关,与GO富集结果相对应。上述结果可以为盐胁迫培养对M. guilliermondii的生长影响及进一步的生物学探究提供科学依据。


关键词: 季也蒙毕赤酵母,  盐胁迫,  转录组学,  高通量测序 

基因

Gene

引物序列(5′→3′)

Primer sequence (5′→3′)

ActinF: AGAGACTCCTATGTTGGTGACG
R: GTGTGGTGCCAGATTTTTTC
STE12F: GCCAGCAAACTAAACAACACC
R: CTTGAGGGGGCAAAACATT
RHOAF: AGGAAGATTATGATCGCCTGAG
R: CTAAACTATCAGGGCTGTCGAT
PBS2F: TGCTACTGACATTACGCCG
R: CATTTGGTCTTGTAGGGTGCT
GPD1F: CGCAGCATGAGAATGTCAAATA
R: CCTCGTCTACCCCCTTAATAAG
GRE2F: AATACGCCGCTGATTCTGT
R: TCACTTTGGCAACTCTCCC
FKS2F: AACCTGAAAAGGAAGACGCT
R: ACCACCGAACATTTGAACG
HOG1 (P38)F: CCGCCAAAGGATGTGATAA
R: TGGTAAGGAGCCGAATAAGG
BMH1, 2-YWHAEF: CTGGCGAGTCCAAGGTTTT
R: CTAAGCGAATAGGATGCGTT
SHO1F: CGGTGATAATGCTTCCCCA
R: CGTTGTGTTCCTATTGCCTCTT
STE20-PAK1F: TACTTGGACAGTTACCTCGTGG
R: TGTCTCTGTGAATGACCTGGTT
WSC2F: AGAGCAAAGGCTTGAGTGG
R: AGCAGACGGTGGAATAACAG
CSNKIF: AAAGAGCAGTCACGACGAGA
R: AATCAAGGCGACGAGCATA
Table 1 Primer sequences used for amplification of target genes by RT-qPCR

样品

Sample

原始序列数

Number of raw reads

过滤后序列数

Number of clean reads

过滤后序列大小

Clean base/Gb

错误率

Error rate/%

Q20百分比

Q20 percentage/%

Q30百分比

Q30 percentage/%

0% NaCl_148 174 42647 349 2207.100.0397.7993.63
0% NaCl_264 171 27663 025 4409.450.0397.7593.53
0% NaCl_355 508 27454 553 9248.180.0397.7593.55
12% NaCl_172 376 38271 405 92610.710.0397.8093.66
12% NaCl_272 045 94270 913 32410.640.0397.7393.50
12% NaCl_363 292 49462 087 2529.310.0397.7493.53
Table 2 Statistics of data output quality
Fig. 1 Volcano plot of the differential expression genes among test groupsFC: Fold change; FDR: Adjusted P value.
Fig. 2 GO enrichment histogram of differential expression genes
Fig. 3 Enrichment scatter plot of differential expression genes’ KEGG pathway
Fig. 4 Transcriptional expression analysis of differential expression genes on M. guilliermondii detected by real-time quantitative reverse polymerase chain reaction (RT-qPCR)FC: Fold change.
[1]   YAN Y, ZHANG X Y, ZHENG X F, et al. Control of postharvest blue mold decay in pears by Meyerozyma guilliermondii and its effects on the protein expression profile of pears. Postharvest Biology and Technology, 2018,136:124-131. DOI:10.1016/j.postharvbio.2017.10.016
doi: 10.1016/j.postharvbio.2017.10.016
[2]   高云慨,张荣意,钟利文,等.1株新分离拮抗酵母菌株对杧果炭疽病生防效果及其分类鉴定.热带生物学报,2015,6(1):47-52.
GAO Y K, ZHANG R Y, ZHONG L W, et al. Classification and identification of a new isolated yeast strain and its biocontrol activity against Anthracnose of mango fruit. Journal of Tropical Biology, 2015,6(1):47-52. (in Chinese with English abstract)
[3]   丁玥,孟帆,王奎,等.季也蒙毕赤酵母对采后草莓病害控制及冷藏品质的影响.南京农业大学学报,2010,33(4):64-68.
DING Y, MENG F, WANG K, et al. Effects of Pichia guilliermondii on disease control and quality of postharvest strawberry during cold storage. Journal of Nanjing Agricultural University, 2010,33(4):64-68. (in Chinese with English abstract)
[4]   RANGARAJAN S, SALEENA L M, VASUDEVAN P, et al. Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant and Soil, 2003,251(1):73-82.
[5]   SIM C S F, CHEOW Y L, NG S L, et al. Biocontrol activities of metal-tolerant endophytes against Ganoderma boninense in oil palm seedlings cultivated under metal stress. Biological Control, 2019,132:66-71. DOI:10.1016/j.biocontrol.2019.02.001
doi: 10.1016/j.biocontrol.2019.02.001
[6]   SHARMA A, KASHYAP P L, SRIVASTAVA A K, et al. Isolation and characterization of halotolerant bacilli from chickpea (Cicer arietinum L.) rhizosphere for plant growth promotion and biocontrol traits. European Journal of Plant Pathology, 2019,153(3):787-800. DOI:10.1007/s10658-018-1592-7
doi: 10.1007/s10658-018-1592-7
[7]   WANG Z, GERSTEIN M, SNYDER M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009,10(1):57-63. DOI:10.1038/nrg2484
doi: 10.1038/nrg2484
[8]   高弢,史建荣.基于高通量测序技术分析麝香草酚处理禾谷镰孢菌后转录组学的变化.江苏农业学报,2017,33(6):1257-1265. DOI:10.3969/j.issn.1000-4440.2017.01.009
GAO T, SHI J R. Transcriptome analysis of Fusarium graminearum treated with thymol based on high-throughput sequencing technology. Jiangsu Journal of Agricultural Sciences, 2017,33(6):1257-1265. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-4440.2017.01.009
[9]   鲍林飞,王新星,何健瑜,等.基于Illumina平台的厚壳贻贝外套膜转录组从头测序.浙江大学学报(农业与生命科学版),2015,41(4):394-406. DOI:10.3785/j.issn.1008-9209.2014.12.291
BAO L F, WANG X X, HE J Y, et al. Illumina-based transcriptome sequencing of mussel Mytiluscoruscus mantle. Journal of Zhejiang University (Agriculture and Life Sciences), 2015,41(4):394-406. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2014.12.291
[10]   宋雪飞,郭晶晶,姜静,等.植物乳杆菌FS5-5在盐胁迫下的转录组学分析.食品科学,2017,38(6):20-26. DOI:10.7506/spkx1002-6630-201706004
SONG X F, GUO J J, JIANG J, et al. Transcriptomic analyses of Lactobacillus plantarum FS5-5 against salt stress. Food Science, 2017,38(6):20-26. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-201706004
[11]   RIO D C, ARES M J, HANNON G J, et al. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols, 2010(6):pdb.prot5439. DOI:10.1101/pdb.prot5439
doi: 10.1101/pdb.prot5439
[12]   GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011,29(7):130-644. DOI:10.1038/nbt.1883
doi: 10.1038/nbt.1883
[13]   LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods, 2001,25(4):402-408. DOI:10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262
[14]   YOUNG M D, WAKEFIELD M J, SMYTH G K, et al. Gene ontology analysis for RNA-Seq: accounting for selection bias. Genome Biology, 2010,11(2):R14. DOI:10.1186/gb-2010-11-2-r14
doi: 10.1186/gb-2010-11-2-r14
[15]   KANEHISA M, ARAKI M, GOTO S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 2008,36(Suppl.Ⅰ):D480-D484. DOI:10.1093/nar/gkm882
doi: 10.1093/nar/gkm882
[16]   QI Q, GUO Z L, LIANG Y L, et al. Hydrogen sulfide alleviates oxidative damage under excess nitrate stress through MAPK/NO signaling in cucumber. Plant Physiology and Biochemistry, 2019,135:1-8. DOI:10.1016/j.plaphy.2018.11.017
doi: 10.1016/j.plaphy.2018.11.017
[17]   MANSURI R M, SHOBBAR Z, JELODAR N B, et al. Dissecting molecular mechanisms underlying salt tolerance in rice: a comparative transcriptional profiling of the contrasting genotypes. Rice, 2019,12:13. DOI:10.1186/s12284-019-0273-2
doi: 10.1186/s12284-019-0273-2
[18]   SHEN L K, ZHUANG B C, WU Q, et al. Phosphatidic acid promotes the activation and plasma membrane localization of MKK7 and MKK9 in response to salt stress. Plant Science: An International Journal of Experimental Plant Biology, 2019,287:110190. DOI:10.1016/j.plantsci.2019.110190
doi: 10.1016/j.plantsci.2019.110190
[19]   DING H N, MA D Y, HUANG X, et al. Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings. Acta Physiologiae Plantarum, 2019,41:123. DOI:10.1007/s11738-019-2918-6
doi: 10.1007/s11738-019-2918-6
[1] SONG Qianqian, CHEN Wenwen, TANG Jianjun, YU Zhenxing, DING Lilian, LIU Shijun, REN Minglei, CHEN Xin. Effects of rhizospheric factors on plant neighbor effects along a salinity gradient[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 601-609.
[2] WANG Jiakun, HEWenfeng.

Community and functionality of fungi in the gastrointestinal tracts of herbivores revealed by omics [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 131-139.

[3] LIANG Yanting, LIU Yuncai, GAO Yun, WANG Huabing, XU Yusong. Diversity analysis on gut microbiota of Glyphodes pyloalis Walker under high temperature[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 215-222.
[4] LI Weicheng, YANG Huimin, GAO Guibin, WEN Xing, SHENG Haiyan. Effects of mulching on soil bacterial community in the small- to medium-diameter Phyllostachys edulis plantation[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 49-58.
[5] WANG Shutian,WANG Jinping,ZHANG Jinchi,YUE Jianmin. Effects of exogenous 2,4-epibrassinolide on antioxidant enzyme activities of camphor seedlings under salt stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 476-482.
[6] WANG Xiyan, QIU Boyin, LIU Yujiao, XU Xiaojian, SU Wen, ZHU Shuijin, CHEN Jinhong. Characteristics of seedling growth, physiology and inorganic ion distribution of different salt tolerant cottons under salt stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(3): 273-280.
[7] WANG Shutian, ZHANG Jinchi, ZHANG Liang. Effects of exogenous 24-epibrassinolide on chlorophyll content and chlorophyll fluorescence characteristics of camphor seedlings under salt stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 45-53.
[8] Ye Xiaoqian, Zhao Zhonghui, Zhu Quanwu, Wang Yingying, Lin Zhangxiang, Ye Chuyu, Fan Longjiang, Xu Hairong. Entire chloroplast genome sequence of tea (Camellia sinensis cv. Longjing 43): a molecular phylogenetic analysis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 404-412.
[9] ZHOU Guoyan, HU Wangxiong, XU Jianhong*, XUE Qingzhong*. Integrating multiple “omics”  analysis for plant metabolites and their functions[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(3): 237-245.
[10] WU Yue‐yan, LI Bo, ZHANG Yan‐zhong, CUI Peng. Effects of salt stress on physiological‐biochemical characteristics and chloroplast submicroscopic structure of Rhododendron indicum[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(6): 642-648.