Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (1): 101-110    DOI: 10.3785/j.issn.1008-9209.2019.07.311
Research articles     
Mechanism of the inhibition of elevated CO2 atmosphere on enzymatic browning of fresh-cut lotus roots
Dong LI1(),Zhihao ZHAN1,Xinyue ZHOU1,Yintao LI1,Li LI1,Xingyu LIN1,Yanqun XU1,2,Zisheng LUO1,2,3,4,5()
1.College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
2.Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China
3.Key Laboratory of Ago-Products Postharvest Handing of Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
4.National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, China
5.Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(1500KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Enzymatic browning is one of the main factors affecting the quality and shelf life of fresh-cut lotus root. The present study aimed to investigate the mechanism of inhibition of elevated carbon dioxide (CO2) on enzymatic browning by applying 20% CO2 to fresh-cut lotus roots. The results showed that 20% CO2 treatment significantly inhibited the increase of yellow-blue (b*) value, browning index, and the decrease of lightness (L*) value, thus delaying browning of fresh-cut lotus root. During the storage, the lotus root in 20% CO2 treatment group showed lower malondialdehyde (MDA) content and relative electrolyte leakage compared with those of the control group, indicating that 20% CO2 treatment effectively maintained membrane integrity and good locular distribution of enzymes and substrates. Enzymatic activity analysis showed that 20% CO2 treatment decreased the activities of phenylalnine ammonialyase, polyphenol oxidase and peroxidase, resulting in inhibiting the rate of enzymatic reactions. In addition, 20% CO2 treatment also decreased nicotinamide adenine dinucleotide reduced form (NADH) content and increased nicotinamide adenine dinucleotide phosphate reduced form (NADPH) content by activating nicotinamide adenine dinucleotide kinase (NADK) activity, which led to the decrease of energy charge and the enhancement of antioxidant levels, and caused delay in senescence and enzymatic browning during the storage. The above results suggest that elevated CO2 might be an effective strategy to inhibit postharvest enzymatic browning.



Key wordsfresh-cut lotus root      elevated CO2 atmosphere      enzymatic browning      energy metabolism     
Received: 31 July 2019      Published: 25 February 2020
CLC:  TS 255.3  
Corresponding Authors: Zisheng LUO     E-mail: dong_li@zju.edu.cn;luozisheng@zju.edu.cn
Cite this article:

Dong LI,Zhihao ZHAN,Xinyue ZHOU,Yintao LI,Li LI,Xingyu LIN,Yanqun XU,Zisheng LUO. Mechanism of the inhibition of elevated CO2 atmosphere on enzymatic browning of fresh-cut lotus roots. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 101-110.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.07.311     OR     http://www.zjujournals.com/agr/Y2020/V46/I1/101


高浓度二氧化碳气调抑制鲜切莲藕酶促褐变的机制

利用20%二氧化碳(CO2)气调贮藏鲜切莲藕,以探究CO2对莲藕采后褐变的影响及其相关调控机制。结果表明:20% CO2显著抑制黄蓝(b*)值、褐变指数的上升及明度(L*)值的下降,延缓了莲藕褐变的发生。贮藏期间,20% CO2处理组中丙二醛(malondialdehyde, MDA)含量及相对电导率均显著低于对照组(P<0.05,P<0.01),说明20% CO2处理能够维持细胞膜结构完整性,维持良好的酶与底物区室化分布。褐变相关酶活性分析表明,20% CO2处理降低了苯丙氨酸解氨酶、多酚氧化酶及过氧化物酶活性,有效抑制了酶促反应速率。此外,20% CO2处理通过激活烟酰胺腺嘌呤二核苷酸激酶(nicotinamide adenine dinucleotide kinase, NADK)活性,降低细胞还原型烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide reduced form, NADH)水平并提高还原型烟酰胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate reduced form, NADPH)水平,引起能荷降低的同时提高细胞抗氧化水平,进而延缓莲藕采后衰老及酶促褐变的发生。上述结果表明,高浓度CO2气调是一种有效的抑制酶促褐变的采后保鲜手段。


关键词: 鲜切莲藕,  高浓度CO2气调,  酶促褐变,  能量代谢 
Fig. 1 Effect of elevated CO2 on exterior quality, yellow-blue (b*) value, lightness(L*) value and browning index of fresh-cut lotus rootValues are presented as means ± standard deviation. Single asterisk (*) indicates significant differences at the 0.05 probability level, and double asterisks (**) indicate highly significant differences at the 0.01 probability level; n=3.
Fig. 2 Effect of elevated CO2 on MDA content and relative electrolyte leakage of fresh-cut lotus rootValues are presented as means ± standard deviation. Single asterisk (*) indicates significant differences at the 0.05 probability level, and double asterisks (**) indicate highly significant differences at the 0.01 probability level; n=3.
Fig. 3 Effect of elevated CO2 on the activities of PAL, PPO and POD of fresh-cut lotus rootValues are presented as means ± standard deviation. Single asterisk (*) indicates significant differences at the 0.05 probability level, and double asterisks (**) indicate highly significant differences at the 0.01 probability level; n=3.
Fig. 4 Effect of elevated CO2 on the contents of ATP, ADP, AMP and energy charge of fresh-cut lotus rootValues are presented as means ± standard deviation. Single asterisk (*) indicates significant differences at the 0.05 probability level, and double asterisks (**) indicate highly significant differences at the 0.01 probability level; n=3.
Fig. 5 Effect of elevated CO2 on the contents of NADH, NAD, NADPH, NADP and the activity of NADK in fresh-cut lotus root
[1]   GUO H B. Cultivation of lotus (Nelumbo nucifera Gaertn. ssp. nucifera) and its utilization in China. Genetic Resources and Crop Evolution, 2009,56(3):323-330. DOI:10.1007/s10722-008-9366-2
doi: 10.1007/s10722-008-9366-2
[2]   OLIVEIRA M, ABADIAS M, USALL J, et al. Application of modified atmosphere packaging as a safety approach to fresh-cut fruits and vegetables: a review. Trends in Food Science & Technology, 2015,46(1):13-26. DOI:10.1016/j.tifs2015.07.017.
doi: 10.1016/j.tifs2015.07.017
[3]   ZHANG S Y, YU Y W, XIAO C L, et al. Effect of carbon monoxide on browning of fresh-cut lotus root slice in relation to phenolic metabolism. LWT-Food Science and Technology, 2013,53(2):555-559. DOI:10.1016/j.lwt.2013.04.001.
doi: 10.1016/j.lwt.2013.04.001
[4]   SUN Y, ZHANG W, ZENG T, et al. Hydrogen sulfide inhibits enzymatic browning of fresh-cut lotus root slices by regulating phenolic metabolism. Food Chemistry, 2015,177:376-381. DOI:10.1016/j.foodchem.2015.01.065
doi: 10.1016/j.foodchem.2015.01.065
[5]   DU J H, FU Y C, WANG N Y. Effects of aqueous chlorine dioxide treatment on browning of fresh-cut lotus root. LWT-Food Science and Technology, 2009,42(2):654-659. DOI:10.1016/j.lwt.2008.08.007
doi: 10.1016/j.lwt.2008.08.007
[6]   ZHOU D D, HUANG Y M, TU K. Effect of konjac glucomannan coating on antioxidant capacity and phenolic metabolism in fresh-cut lotus roots. Journal of Food Processing and Preservation, 2018,42:e137599. DOI:10.1111/jfpp.13759
doi: 10.1111/jfpp.13759
[7]   GARCIA-GONZALEZ L, GEERAERD A H, SPILIMBERGO S, et al. High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. International Journal of Food Microbiology, 2007,117(1):1-28. DOI:10.1016/j.ijfoodmicro.2007.02.018
doi: 10.1016/j.ijfoodmicro.2007.02.018
[8]   LI D, ZHANG X C, LI L, et al. Elevated CO2 delayed the chlorophyll degradation and anthocyanin accumulation in postharvest strawberry fruit. Food Chemistry, 2019,285:163-170. DOI:10.1016/j.foodchem.2019.01.150
doi: 10.1016/j.foodchem.2019.01.150
[9]   WATKINS C B. Responses of horticultural commodities to high carbon dioxide as related to modified atmosphere packaging. HortTechnology, 2000,10(3):501-506. DOI:10.21273/
doi: 10.21273/
[10]   TIAN S P, JIANG A L, XU Y, et al. Responses of physiology and quality of sweet cherry fruit to different atmospheres in storage. Food Chemistry, 2004,87(1):43-49. DOI:10.1016/j.foodchem.2003.10.014
doi: 10.1016/j.foodchem.2003.10.014
[11]   朱锐,周文芳,肖青青,等.鲜切茭白的气调保鲜工艺优化.食品工业,2018,39(5):162-165.
ZHU R, ZHOU W F, XIAO Q Q, et al. Optimizing of modified atmosphere packaging for fresh cut Zizania caduciflora. Food Industry, 2018,39(5):162-165. (in Chinese with English abstract)
[12]   谢君,代钰,王宏勋,等.高浓度二氧化碳气调包装通过调节酚代谢抑制鲜切莲藕的酶促褐变.现代食品科技,2018,34(7):168-174. DOI:10.13982/j.mfst.1673-9078.2018.7.025
XIE J, DAI Y, WANG H X, et al. High concentration CO2 modified-atmosphere packaging inhibits enzymatic browning of fresh-cut lotus root slices by regulating phenolic metabolism. Modern Food Science and Technology, 2018,34(7):168-174. (in Chinese with English abstract)
doi: 10.13982/j.mfst.1673-9078.2018.7.025
[13]   LI D, LIMWACHIRANON J, LI L, et al. Involvement of energy metabolism to chilling tolerance induced by hydrogen sulfide in cold-stored banana fruit. Food Chemistry, 2016,208:272-278. DOI:10.1016/j.foodchem.2016.03.113
doi: 10.1016/j.foodchem.2016.03.113
[14]   AGHDAM M S, JANNATIZADEH A, LUO Z, et al. Ensuring sufficient intracellular ATP supplying and friendly extracellular ATP signaling attenuates stresses, delays senescence and maintains quality in horticultural crops during postharvest life. Trends in Food Science & Technology, 2018,76:67-81. DOI:10.1016/j.tifs.2018.04.003
doi: 10.1016/j.tifs.2018.04.003
[15]   LI D, LI L, GE Z W, et al. Effects of hydrogen sulfide on yellowing and energy metabolism in broccoli. Postharvest Biology and Technology, 2017,129:136-142. DOI:10.1016/j.postharvbio.2017.03.017
doi: 10.1016/j.postharvbio.2017.03.017
[16]   LI L, Lü F Y, GUO Y Y, et al. Respiratory pathway metabolism and energy metabolism associated with senescence in postharvest broccoli (Brassica oleracea L. var. italica) florets in response to O2/CO2 controlled atmospheres. Postharvest Biology and Technology, 2016,111:330-336. DOI:10.1016/j.postharvbio.2015.09.032
doi: 10.1016/j.postharvbio.2015.09.032
[17]   BROOKES P S, YOON Y S, ROBOTHAM J L, et al. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. American Journal of Physiology: Cell Physiology, 2004,287(4):C817-C833. DOI:10.1152/ajpcell.00139.2004
doi: 10.1152/ajpcell.00139.2004
[18]   MITTLER R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002,7(2):405-410. DOI:10.1016/s1360-1385(02)02312-9
doi: 10.1016/s1360-1385(02)02312-9
[19]   LI D, LIMWACHIRANON J, LI L, et al. Hydrogen peroxide accelerated the lignification process of bamboo shoots by activating the phenylpropanoid pathway and programmed cell death in postharvest storage. Postharvest Biology and Technology, 2019,153:79-86. DOI:10.1016/j.postharvbio.2019.03.012
doi: 10.1016/j.postharvbio.2019.03.012
[20]   WANG Y S, LUO Z S, DU R X. Nitric oxide delays chlorophyll degradation and enhances antioxidant activity in banana fruits after cold storage. Acta Physiologiae Plantarum, 2015,37:74. DOI:10.1007/s11738-015-1821-z
doi: 10.1007/s11738-015-1821-z
[21]   BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976,72(1/2):248-254. DOI:10.1016/0003-2697(76)90527-3
doi: 10.1016/0003-2697(76)90527-3
[22]   LI D, LI L, XIAO G N, et al. Effects of elevated CO2 on energy metabolism and γ-aminobutyric acid shunt pathway in postharvest strawberry fruit. Food Chemistry, 2018,265:281-289. DOI:10.1016/j.foodchem.2018.05.106
doi: 10.1016/j.foodchem.2018.05.106
[23]   GIBON Y, LARHER F. Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium. Analytical Bioche-mistry, 1997,251(2):153-157. DOI:10.1006/abio.1997.2283
doi: 10.1006/abio.1997.2283
[24]   LIN Y X, LIN Y F, CHEN Y H, et al. Hydrogen peroxide induced changes in energy status and respiration metabolism of harvested longan fruit in relation to pericarp browning. Journal of Agricultural and Food Chemistry, 2016,64(22):4627-4632. DOI:10.1021/acs.jafc.6b01430
doi: 10.1021/acs.jafc.6b01430
[25]   张莉会,乔宇,廖李,等.不同酶抑制剂对控制鲜切山药褐变的研究.食品工业,2018,39(10):82-86.
ZHANG L H, QIAO Y, LIAO L, et al. Study on the control of the browning of fresh cut yam by different enzyme inhibitors. Food Industry, 2018,39(10):82-86. (in Chinese with English abstract)
[26]   乔方,黄晓钰,余海虎.果蔬酶促褐变机理及其抑制方法研究进展.安徽农业科学,2007,35(24):7406-7408. DOI:10.3969/j.issn.0517-6611.2007.24.012
QIAO F, HUANG X Y, YU H H. Research advance in the enzymatic browning and its inhibition method of fruit and vegetable. Journal of Anhui Agricultural Sciences, 2007,35(24):7406-7408. (in Chinese with English abstract)
doi: 10.3969/j.issn.0517-6611.2007.24.012
[27]   JIANG Y M, DUAN X W, JOYCE D, et al. Advances in understanding enzymatic browning of harvested litchi fruit. Food Chemistry, 2004,88(3):443-446. DOI:10.1016/j.foodchem.2004.02.004
doi: 10.1016/j.foodchem.2004.02.004
[28]   罗自生,张莉.壳聚糖/纳米SiOx复合物涂膜对鲜切竹笋品质和生理的影响.中国农业科学,2010,43(22):4694-4700. DOI:10.3864/j.issn.0578-1752.2010.22.017
LUO Z S, ZHANG L. Effect of chitosan/nano-SiOx complex on quality and physiology of fresh-cut bamboo shoot. Scientia Agricultura Sinica, 2010,43(22):4694-4700. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2010.22.017
[29]   SUN J, XIANG X, YU C Y, et al. Variations in contents of browning substrates and activities of some related enzymes during litchi fruit development. Scientia Horticulturae, 2009,120(4):555-559. DOI:10.1016/j.scienta.2008.12.006
doi: 10.1016/j.scienta.2008.12.006
[30]   HISAMINATO H, MURATA M, HOMMA S. Relationship between the enzymatic browning and phenylalanine ammonia-lyase activity of cut lettuce, and the prevention of browning by inhibitors of polyphenol biosynthesis. Bioscience, Biotechnology and Biochemistry, 2001,65(5):1016-1021. DOI:10.1271/bbb.65.1016
doi: 10.1271/bbb.65.1016
[31]   SUBRAMANIAN N, VENKATESH P, GANGULI S, et al. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins. Journal of Agricultural and Food Chemistry, 1999,47(7):2571-2578. DOI:10.1021/jf981042y
doi: 10.1021/jf981042y
[32]   ZHANG S, LIN H T, LIN Y F, et al. Energy status regulates disease development and respiratory metabolism of Lasiodi-plodia theobromae (Pat). Griff. & Maubl.-infected longan fruit. Food Chemistry, 2017,231:238-246. DOI:10.1016/j.foodchem.2017.03.132
doi: 10.1016/j.foodchem.2017.03.132
[33]   蒋国玲,孙志高,沈海亮,等.低温在鲜切果蔬保鲜技术中研究进展.饮料工业,2011,14(1):15-17. DOI:10.3969/j.issn.1007-7871.2011.01.002
JIANG G L, SUN Z G, SHEN H L, et al. Progress in research on role of low temperature in storage techniques for
doi: 10.3969/j.issn.1007-7871.2011.01.002
[1] Zhenzhen PENG,Qihui YE,Xiaoyan XU,Daqi FU. Effect of 1-methylcyclopropene treatment on storage quality of red Fuji apple[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 83-92.
[2] Hanqing ZHANG,Haiyan GAO,Ruiling LIU,Yanchao HAN,Xiangjun FANG,Hangjun CHEN. Effects of packaging of polyethylene bags with different thicknesses on storage quality and lignification of water bamboo[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 55-63.
[3] Ze LIANG,Lei WANG,Mingyi YANG,Zisheng LUO,Yanqun XU,Li LI. Status and progress in quantitative proteomic study of postharvest fruits and vegetables during commercial treatment[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 8-16.
[4] Da WANG,Xiangzheng YANG,Binguang JIA,Maoyu WU. Influence of different packaging structures on forced air pre-cooling effect of blueberry[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 47-54.
[5] Peiyu ZHANG,Fanfan WANG,Qiong LIN,Yuquan DUAN. Effects of nano-SiO2 and polylactide/poly(butylenes adipate-co-terephthalate) packaging bags on quality of Chinese cabbage (Brassica chinensis L.) during shelf life[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 93-100.
[6] Fengli WANG,Jiying QIU,Meixue DAI,Leilei CHEN,Shuangzhi ZHAO,Xue XIN,Qingxin ZHOU. Isolation, identification and pathogenicity study of pathogens during postharvest storage of sweet cherries[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 126-134.
[7] Ling LU,Yida FANG,Li LI,Yanqun XU,Zisheng LUO. Effect of water/oil/water double-preservation emulsion on storage quality of broccoli[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 74-82.