Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (4): 490-499    DOI: 10.3785/j.issn.1008-9209.2018.09.051
Animal sciences & veterinary medicine     
Effects of dietary Bacillus subtilis and yeast culture on growth performance, body composition and farming water quality of juvenile hybrid grouper (Epinephelus fuscoguttatus ×Epinephelus lanceolatus ♂)
Chengqiang WANG1(),Baoshan LI1(),Jiying WANG1,Bingshan HUANG1,Tiantian HAO1,Yongzhi SUN1,Changxing MA2,Ying ZHOU2
1. Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, Shandong, China
2. National Demonstration Center for Experimental Fisheries Science Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
Download: HTML   HTML (   PDF(860KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

An eight-week feeding experiment was conducted to evaluate the effects of dietary administration of Bacillus subtilis and yeast culture on growth performance, whole body composition and farming water quality of juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Nine isonitrogenous and isoenergetic diets were formulated that contained three levels of B. subtilis [0 (control), 0.5% and 1.0%] and three yeast culture levels [0 (control), 0.5% and 1.0%] at each B. subtilis level; the Y0B0 was taken as control group. The results showed that the interaction between B. subtilis and yeast culture had no significant effect on specific growth rate (SGR) of grouper (P>0.05). The SGR of Y1B1 and Y1B2 groups were significantly higher than the control and Y2B2 groups (P<0.05). The feed efficiency (FE) and protein efficiency ratio (PER) of grouper had a similar trend with SGR. The whole fish body composition showed no significant difference between treatment groups (P>0.05). Meanwhile, the results showed that the interaction between B. subtilis and yeast culture had no significant effect on the whole body composition of juveniles (P>0.05). The monitoring results of farming water quality for 12 d showed that the interaction between B. subtilis and yeast culture had a significant effect on the ammonia, nitrite and chemical oxygen demand (COD) contents in water starting from the sixth day; and the farming water quality of Y1B1 and Y1B2 groups had a significant improvement, compared with the control group. In conclusion, 0.5% yeast culture+0.5% B. subtilis and 0.5% yeast culture+1.0% B. subtilis in diets could promote growth performance and PER of juvenile hybrid grouper, and the farming water quality could be also obviously improved.



Key wordsEpinephelus fuscoguttatus × Epinephelus lanceolatus       Bacillus subtilis      yeast culture      growth performance      body composition      water quality     
Received: 05 September 2018      Published: 17 September 2019
CLC:  S 963  
Corresponding Authors: Baoshan LI     E-mail: chengqiangwang@126.com;bsleeyt@126.com
Cite this article:

Chengqiang WANG,Baoshan LI,Jiying WANG,Bingshan HUANG,Tiantian HAO,Yongzhi SUN,Changxing MA,Ying ZHOU. Effects of dietary Bacillus subtilis and yeast culture on growth performance, body composition and farming water quality of juvenile hybrid grouper (Epinephelus fuscoguttatus ×Epinephelus lanceolatus ♂). Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 490-499.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2018.09.051     OR     http://www.zjujournals.com/agr/Y2019/V45/I4/490


饲料中添加枯草芽孢杆菌和酵母培养物对珍珠龙胆石斑鱼幼鱼生长性能、体组成及养殖水质的影响

为研究在饲料中添加枯草芽孢杆菌和酵母培养物对珍珠龙胆石斑鱼幼鱼生长性能、体组成及养殖水质的影响,选用从健康珍珠龙胆石斑鱼肠道分离培养的枯草芽孢杆菌制成饲料添加剂,分别在基础饲料中添加0(B0)、0.5%(B1)、1.0%(B2)枯草芽孢杆菌制剂,同时分别在每个枯草芽孢杆菌水平上添加0(Y0)、0.5%(Y1)、1.0%(Y2)的酵母培养物,制成9组等氮等脂的试验饲料,以Y0B0组为对照组,饲喂初始体质量为(23.41±0.47) g的珍珠龙胆石斑鱼幼鱼,试验周期为8周。结果显示:枯草芽孢杆菌和酵母培养物对幼鱼特定生长率没有表现出显著的交互作用(P>0.05),Y1B1和Y1B2组幼鱼特定生长率处于较高水平,显著高于对照组和Y2B2组(P<0.05),且饲料效率和蛋白质效率呈现同特定生长率相似的变化趋势;幼鱼全鱼粗蛋白、粗脂肪、粗灰分和水分含量在各组之间均无显著差异(P>0.05),且枯草芽孢杆菌和酵母培养物对幼鱼体组成各项指标也均未表现出显著的交互作用(P>0.05)。12 d的水质监测结果显示,从第6天开始,枯草芽孢杆菌和酵母培养物对养殖水体中氨氮、亚硝酸盐含量和化学需氧量均表现出显著的交互作用,且Y1B1和Y1B2试验组水质指标(氨氮、亚硝酸盐含量和化学需氧量)较对照组得到明显改善(P<0.05)。综上所述,当饲料中的酵母培养物和枯草芽孢杆菌添加水平为0.5%+0.5%(Y1B1组)和0.5%+1.0%(Y1B2组)时,珍珠龙胆石斑鱼幼鱼获得最佳的生长性能,且具有较高的蛋白质效率,同时,养殖水质也得到明显改善。


关键词: 珍珠龙胆石斑鱼,  枯草芽孢杆菌,  酵母培养物,  生长性能,  体组成,  水质 

原料

Composition

w/%
鱼粉 Fish meal 25.00
发酵豆粕 Fermented soybean meal 18.00
酪蛋白 Casein 9.00
维生素预混料1) Vitamin premix1) 1.00
矿物质预混料2) Mineral premix2) 1.00
大豆卵磷脂 Soy lecithin 1.00
鱼油 Fish oil 8.00
其他成分 Other composition 37.00

成分

Ingredient

w/%
粗蛋白 Crude protein 52.50
粗脂肪 Crude lipid 11.63
粗灰分 Crude ash 9.29
水分 Moisture 5.25
总磷 Total phosphorus 1.53
Table 1 Basic formula and nutrient composition of experimental diets (dry matter)

处理1)

Treatment1)

初始体质量

IBM/g

终末体质量

FBM/g

存活率

SR/%

特定生长率

SGR/(%/d)

饲料效率

FE/%

摄食率

FR/(%/d)

蛋白质效率

PER/%

Y0B0 23.42±0.09 77.85±0.49e 94.44±2.94 2.14±0.02e 1.46±0.02c 1.29±0.04 2.81±0.03c
Y0B1 23.38±0.14 80.60±0.24cd 93.33±3.85 2.21±0.01bc 1.57±0.02abc 1.27±0.05 3.01±0.03abc
Y0B2 23.38±0.03 79.48±0.55cde 98.89±1.11 2.18±0.01cde 1.49±0.02c 1.19±0.02 2.84±0.03bc
Y1B0 23.46±0.03 80.00±0.50cd 92.22±1.11 2.19±0.02bcd 1.48±0.01c 1.33±0.05 2.84±0.03bc
Y1B1 23.41±0.09 83.15±0.06a 95.55±2.22 2.26±0.02a 1.65±0.04a 1.21±0.03 3.15±0.07a
Y1B2 23.43±0.05 83.08±0.45ab 95.55±2.22 2.25±0.01a 1.63±0.02ab 1.21±0.03 3.10±0.04a
Y2B0 23.46±0.09 78.58±0.63de 91.11±2.22 2.16±0.01de 1.47±0.02c 1.36±0.04 2.83±0.04c
Y2B1 23.38±0.08 81.07±0.20bc 94.45±2.22 2.23±0.01ab 1.61±0.04ab 1.25±0.03 3.06±0.06ab
Y2B2 23.40±0.07 79.87±0.21cde 94.45±2.22 2.19±0.01bcd 1.51±0.03bc 1.26±0.03 2.86±0.05bc
方差分析(P值) ANOVA (P-value)
枯草芽孢杆菌 B. subtilis 0.189 0.000 0.000 0.006 0.003
酵母培养物 Yeast culture 0.530 0.000 0.002 0.293 0.000
交互作用 Interaction 0.727 0.102 0.117 0.567 0.113
Table 2 Effects of dietary B. subtilis and yeast culture on growth performance of juveniles

处理1)

Treatment1)

w(粗蛋白)

Crude protein content

w(粗脂肪)

Crude lipid content

w(粗灰分)

Crude ash content

w(水分)

Moisture content

Y0B0 16.44±0.10 5.78±0.02 4.35±0.07 71.52±0.09
Y0B1 16.68±0.06 5.86±0.03 4.44±0.06 71.41±0.19
Y0B2 16.35±0.11 5.71±0.02 4.31±0.11 72.01±0.12
Y1B0 16.19±0.07 5.72±0.02 4.22±0.03 72.13±0.18
Y1B1 16.60±0.13 5.77±0.08 4.20±0.05 72.31±0.25
Y1B2 16.71±0.23 5.91±0.11 4.28±0.09 71.85±0.33
Y2B0 16.24±0.23 5.75±0.08 4.30±0.08 71.96±0.42
Y2B1 16.71±0.06 5.83±0.04 4.35±0.09 72.09±0.07
Y2B2 16.59±0.18 5.78±0.06 4.30±0.11 71.59±0.29
方差分析(P值) ANOVA (P-value)
枯草芽孢杆菌 B. subtilis 0.015 0.378 0.796 0.825
酵母培养物 Yeast culture 0.976 0.942 0.156 0.101
交互作用 Interaction 0.302 0.161 0.797 0.175
Table 3 Effects of dietary B. subtilis and yeast culture on whole fish body composition of juveniles %

处理1)

Treatment1)

试验时间 Experimental time/d
3 6 9 12
Y0B0 0.38±0.01ab 0.92±0.04a 2.04±0.07a 4.05±0.05ab
Y0B1 0.31±0.01cd 0.61±0.03bc 1.21±0.06c 3.62±0.17bc
Y0B2 0.34±0.01bc 0.68±0.02b 1.53±0.04b 3.79±0.13ab
Y1B0 0.36±0.01ab 0.86±0.04a 1.76±0.08ab 3.89±0.05ab
Y1B1 0.28±0.01d 0.48±0.01c 1.05±0.05c 2.72±0.11e
Y1B2 0.29±0.01d 0.50±0.01c 1.09±0.04c 2.95±0.05de
Y2B0 0.39±0.01a 0.99±0.02a 2.00±0.06a 4.09±0.06ab
Y2B1 0.30±0.01cd 0.51±0.01c 1.18±0.04c 3.24±0.12cd
Y2B2 0.38±0.01ab 0.98±0.01a 2.05±0.07a 4.12±0.04a
方差分析(P值) ANOVA (P-value)
枯草芽孢杆菌 B. subtilis 0 0 0 0
酵母培养物 Yeast culture 0 0 0 0
交互作用 Interaction 0.013 0 0 0
Table 4 Effects of dietary B. subtilis and yeast culture on NH3-N content in farming watermg/L

处理1)

Treatment1)

试验时间 Experimental time/d
3 6 9 12
Y0B0 0.11±0.01 0.25±0.01a 0.41±0.00a 0.59±0.01a
Y0B1 0.09±0.01 0.21±0.01bcd 0.32±0.01de 0.49±0.01bc
Y0B2 0.09±0.01 0.21±0.01bcd 0.34±0.01cd 0.53±0.01b
Y1B0 0.10±0.01 0.24±0.01ab 0.38±0.00ab 0.58±0.01a
Y1B1 0.09±0.00 0.18±0.01e 0.27±0.01f 0.42±0.01e
Y1B2 0.09±0.00 0.19±0.01de 0.29±0.00ef 0.43±0.01de
Y2B0 0.10±0.00 0.25±0.00a 0.40±0.01ab 0.60±0.01a
Y2B1 0.09±0.01 0.19±0.01de 0.30±0.01ef 0.46±0.01cd
Y2B2 0.10±0.01 0.24±0.00abc 0.37±0.01bc 0.58±0.01a
方差分析(P值) ANOVA (P-value)
枯草芽孢杆菌 B. subtilis 0.009 0 0 0
酵母培养物 Yeast culture 0.263 0 0 0
交互作用 Interaction 0.750 0.005 0.005 0
Table 5 Effects of dietary B. subtilis and yeast culture on NO2 -N content in farming watermg/L

处理1)

Treatment1)

试验时间 Experimental time/d
3 6 9 12
Y0B0 3.74±0.05a 6.45±0.05a 10.07±0.29a 13.30±0.15a
Y0B1 3.17±0.03cd 5.05±0.04c 7.33±0.16cd 10.57±0.27cd
Y0B2 3.42±0.06bc 5.47±0.06b 7.58±0.25cd 11.63±0.32bc
Y1B0 3.65±0.08ab 5.69±0.09b 8.51±0.42bc 12.21±0.33ab
Y1B1 2.97±0.03d 4.58±0.08d 6.73±0.10d 9.09±0.12e
Y1B2 3.04±0.04d 4.80±0.13cd 6.99±0.07d 9.50±0.11de
Y2B0 3.73±0.05a 6.43±0.07a 10.03±0.22a 13.24±0.15a
Y2B1 3.11±0.07d 4.86±0.11cd 7.16±0.11d 9.90±0.18de
Y2B2 3.62±0.05ab 6.34±0.06a 9.37±0.36ab 12.49±0.25ab
方差分析(P值) ANOVA (P-value)
枯草芽孢杆菌 B. subtilis 0 0 0 0
酵母培养物 Yeast culture 0 0 0 0
交互作用 Interaction 0.001 0 0.002 0.001
Table 6 Effects of dietary B. subtilis and yeast culture on chemical oxygen demand (COD) content in farming watermg/L
[1]   VERSCHUERE L , ROMBAUT G , SORGELOOS P , et al . Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews, 2000,64(4):655-671.
[2]   SHEN W Y , FU L L , LI W F , et al . Effect of dietary supplementation with Bacillus subtilis on the growth, performance, immune response and antioxidant activities of the shrimp (Litopenaeus vannamei). Aquaculture Research, 2010,41:1691-1698.
[3]   SANGMA T , KAMILYA D . Dietary Bacillus subtilis FPTB13 and chitin, single or combined, modulate systemic and cutaneous mucosal immunity and resistance of catla, Catla catla (Hamilton) against edwardsiellosis. Comparative Immunology, Microbiology and Infectious Diseases, 2015,43(9):8-15.
[4]   杨明容,陈再炜,曹岩,等 .枯草芽孢杆菌对泥鳅养殖水体水质的影响.研究报告,2017(5):3-6.
YANG M R , CHEN Z W , CAO Y , et al . Effect of Bacillus subtilis on farming water quality of Misgurnus anguillicaudatus . The Research Report, 2017(5):3-6. (in Chinese)
[5]   粟雄高,李小勤,冷向军,等 .酵母培养物和芽孢杆菌对凡纳滨对虾生长、蛋白酶活性和免疫性能的影响.海洋渔业,2012,34(2):168-176.
SU X G , LI X Q , LENG X J , et al . Effects of yeast culture and Bacillus on growth, protease activity and immunity of Litopenaeus vannamei . Marine Fisheries, 2012,34(2):168-176. (in Chinese with English abstract)
[6]   徐磊,刘波,谢骏,等 .酵母培养物对异育银鲫生长、血液生化及免疫的影响.江苏农业科学,2010(6):371-374.
XU L , LIU B , XIE J , et al . Effects of yeast cultures on growth, blood biochemistry and immunity of Carassius auratus gibelio . Jiangsu Agricultural Sciences, 2010(6):371-374. (in Chinese)
[7]   贺国龙,刘立鹤,张恒 .草鱼肠道芽孢杆菌的鉴定及产酶能力的分析.淡水渔业,2012,42(4):3-8.
HE G L , LIU L H , ZHANG H . Study on Bacillus from grass carp (Ctenopharyngodon idellus) intestine and its zymogeni-cities. Freshwater Fisheries, 2012,42(4):3-8. (in Chinese with English abstract)
[8]   雷衍之 .养殖水环境化学实验.北京:中国农业出版社,2006:31-60.
LEI Y Z . Chemistry Experiment of Aquaculture Water Environment. Beijing: China Agriculture Press, 2006:31-60. (in Chinese)
[9]   苏艳莉,孙盛明,朱健,等 .枯草芽孢杆菌在水产养殖中的研究进展.中国渔业质量与标准,2016,6(6):32-39.
SU Y L , SUN S M , ZHU J , et al . Advances of Bacillus subtilis application in aquaculture. Chinese Fishery Quality and Standards, 2016,6(6):32-39. (in Chinese with English abstract)
[10]   LIU C H , CHUI C H , WANG S W , et al . Dietary administration of the probiotic, Bacillus subtilis E20, enhances the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides . Fish & Shellfish Immunology, 2012,33(4):699-706.
[11]   孙盛明,苏艳莉,张武肖,等 .饲料中添加枯草芽孢杆菌对团头鲂幼鱼生长性能、肝脏抗氧化指标、肠道菌群结构和抗病力的影响.动物营养学报,2016,28(2):507-514.
SUN S M , SU Y L , ZHANG W X , et al . Effects of dietary Bacillus subtilis on growth performance, liver antioxidant ability, intestinal microflora structure and disease resistance of juvenile blunt snout bream (Megalobrama amblycephala). Chinese Journal of Animal Nutrition, 2016,28(2):507-514. (in Chinese with English abstract)
[12]   程远,黄凯,黄秀芸,等 .饲料中添加枯草芽孢杆菌对吉富罗非鱼幼鱼生长性能、免疫力和抗氧化功能的影响.动物营养学报,2014,26(6):1503-1512.
CHENG Y , HUANG K , HUANG X Y , et al . Effects of dietary Bacillus subtilis on growth performance, immunity and anti-oxidation function of juvenile genetic improvement of farmed tilapia (GIFT, Oreochromis niloticus). Chinese Journal of Animal Nutrition, 2014,26(6):1503-1512. (in Chinese with English abstract)
[13]   刘晓勇,张颖,齐茜,等 .枯草芽孢杆菌对杂交鲟幼鱼生长性能、消化酶活性及非特异性免疫的影响.中国水产科学,2011,18(6):1315-1320.
LIU X Y , ZHANG Y , QI Q , et al . Effects of Bacillus subtilis on growth, digestive enzyme activity, and non-specific immunity in hybrid sturgeon (Acipenser baeri ♂×Acipenser schrenkii ♀) juveniles. Journal of Fishery Sciences of China, 2011,18(6):1315-1320. (in Chinese with English abstract)
[14]   AI Q H , XU H G , MAI K S, et al . Effects of dietary supplementation of Bacillus subtilis and fructooligosacc-haride on growth performance, survival, non-specific immune response and disease resistance of juvenile large yellow croaker, Larimichthys crocea . Aquaculture, 2011,317(1):155-161.
[15]   仇明,王爱明,封功能,等 .枯草芽孢杆菌对斑点叉尾鮰生长性能及肌肉营养成分影响.粮食与饲料工业,2010(7):46-49.
QIU M , WANG A M , FENG G N , et al . Effect of Bacillus subtilis on growth performance and muscle nutritional composition of Ietalurus punetaus . Cereal & Feed Industry, 2010(7):46-49. (in Chinese)
[16]   何远发,郁欢欢,迟淑艳,等 .酵母培养物对凡纳滨对虾生长性能、非特异性免疫力和抗病力的影响.动物营养学报,2016,28(12):4063-4072.
HE Y F , YU H H , CHI S Y , et al . Effects of yeast culture on growth performance, nonspecific immunity and disease resistance of Litopenaeus vannamei . Chinese Journal of Animal Nutrition, 2016,28(12):4063-4072. (in Chinese with English abstract)
[17]   WEN J .Effects of dietary probiotics and yeast culture on growth, immune response and disease resistance of Japanese flounder, olivaceusParalichthys.Qingdao, Shandong: China Ocean University, 2007. (in Chinese with English abstract)
[18]   沈斌乾,陈建明,郭建林,等 .饲料中添加枯草芽孢杆菌对青鱼生长、消化酶活性和鱼体组成的影响.水生生物学报,2013,37(1):48-53.
SHEN B Q , CHEN J M , GUO J L , et al . Effect of adding Bacillus subtilis to diets on growth performance, digestive enzymes activity and body composition of fingerling black carp (Mylopharyngodon piceus). Acta Hydrobiologica Sinica, 2013,37(1):48-53. (in Chinese with English abstract)
[19]   MERRIFIELD D L , DIMUTROGLOU A , BRADLEY G , et al . Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum): Ⅰ. Effects on growth performance, utilization feed , intestinal microbiota and related health criteria . Aquaculture Nutrition, 2010,16(5):504-510.
[20]   康学会,霍雅雯,李永娟,等 .饲料中添加酵母培养物(百惠康)替代鱼粉对异育银鲫生长性能及血液指标的影响.饲料研究,2017(9):31-36.
KAND X H , HUO Y W , LI Y J , et al . Effect of dietary addition of yeast cultures (Baihuikang) in replacement of fish meal on growth performance and blood index of Carassius auratus gibelio . Feed Research, 2017(9):31-36. (in Chinese)
[21]   邱燕 .三种微生态制剂对草鱼(Ctenopharyngodon idellus)生长性能、生理机能及肠道黏膜的影响.江苏,苏州:苏州大学,2010.
QIU Y . Effects of three microecologicalagents on growth performance, physiological function and intestinal mucosa of grass carp (Ctenopharyngodon idellus). Suzhou, Jiangsu: Suzhou University, 2010. (in Chinese with English abstract)
[22]   王彦波 .益生菌B.coagulans对罗非鱼生长性能和肌肉营养成分的影响研究 .饲料工业,20101(增刊):74-77.
WANG Y B . Effect of probiotic, B. coagulans on growth performance and muscle nutritional composition of Tilapia, Oreochromis niloticus . Feed Industry, 2010,1(Suppl.):74-77. (in Chinese with English abstract)
[23]   李高锋 .酵母培养物在团头鲂饲料中的应用研究.江苏,苏州:苏州大学,2009.
LI G F . Studies on application of yeast culture in artificial feed of Megalobrama amblycephala . Suzhou, Jiangsu: Suzhou University, 2009. (in Chinese with English abstract)
[24]   BAGHERI T , HEDAYATI S A , YAVARI V , et al . Growth, survival and gut microbial load of rainbow trout (Oncorhynchus mykiss) fry given diet supplemented with probiotic during the two months of first feeding. Turkish Journal of Fisheries and Aquatic Science, 2008,8(1):43-48.
[25]   岳强 .类球红细菌和枯草芽孢杆菌对养殖水体的净化作用.河北,保定:河北大学,2012.
YUE Q . Purification of aquaculture water with Rhodobacter sphaeroides and Bacillus subtilis . Baoding, Hebei: Hebei University, 2012. (in Chinese with English abstract)
[26]   邱宝生,林炜铁,杨继国,等 .益生菌在水产养殖中的应用.水产科学,2004,23(7):39-41.
QIU B S , LIN W T , YANG J G , et al . Application of probiotics in aquaculture. Fisheries Science, 2004,23(7):39-41. (in Chinese with English abstract)
[27]   齐欣,魏雪生,陈颖,等 .益生菌在彭泽鲫养殖中的应用研究.饲料广角,2007(15):40-41.
QI X , WEI X S , CHEN Y , et al . Study on the application of probiotics in Pengze Carassius auratus . Feed China,2007(15):40-41. (in Chinese)
[28]   胡凡光,郭萍萍,麻丹萍,等 .饲料中添加枯草芽孢杆菌对促进大菱鲆生长及养殖水环境的影响.渔业现代化,2014,41(2):7-11.
HU F G , GUO P P , MA D P , et al . Study on the impact of Bacillus subtilis on growth and water quality of Scophthalmus maximus (Linnaeus). Fishery Modernization, 2014,41(2):7-11. (in Chinese with English abstract)
[29]   贺国龙,张恒,刘立鹤,等 .饲喂枯草芽孢对草鱼粪便、养殖水体中芽孢数量和水质的影响.淡水渔业,2012,42(2):35-39.
HE G L , ZHANG H , LIU L H , et al . Effect of dietary Bacillus subtilis spores on water quality and the number of spores in the grass carp(Ctenopharyngodon idellus)faeces and water. Freshwater Fisheries, 2012,42(2):35-39. (in Chinese with English abstract)
[30]   黄权,周景祥,孟繁伊,等 .酵母培养物对池塘饲养鲤鱼的生长性能、饲料转化及水质的影响.饲料工业,2004,25(5):61-62.
HUANG Q , ZHOU J X , MENG F Y , et al . Effect of yeast cultures on growth performance, feed conversion and water quality of Cyprinus carpio in pond. Feed Industry, 2004,25(5):61-62. (in Chinese)
[31]   王华,王京伟,杜刚 .养殖水体中微生物全程自养脱氮初步研究.水产科学,2010,29(5):295-298.
WANG H , WANG J W , DU G . Complete autotrophic ammonia removal in aquaculture waters by microbial actions. Fisheries Science, 2010,29(5):295-298. (in Chinese with English abstract)
[1] MA Lianxiang, HOU Chuanchuan, HE Junna, QIU Jialing, LU Xintao, GUO Yang, LIU Bing, LIN Gang, XUE Yan, YU Dongyou. Effect of compound organic trace minerals on growth performance, serum indexes and micromineral excretion in fattening pigs[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 181-189.
[2] HOU Yong, HOU Yanbin, YAO Lei, DAI Binyang, QIAN Lichun, FAN Jinghui. Effects of chilled trash fish and different carbohydrate levels in puffed feed on growth performance and glucose metabolism of snakehead[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 199-208.
[3] HE Shuilian, WU Jingzhi, LU Yan, XU Chunmei, WU Hongzhi. Growth of tetraploid Zantedeschia hybrida and its physiological response to low temperature[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 570-578.
[4] DING Jinting*, ZANG Zelin, HUANG Min . Penaeus vannamei aquaculture water quality prediction based on the improved back propagation neural network[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 128-136.
[5] ZHU Qiong-yao, ZHANG Guang-xin*, FENG Tian-heng, HUANG Ping-jie, HOU Di-bo. Study on water quality analysis and early-warning technology based on rough set and evidence theory[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(6): 747-754.
[6] FAN Juexin1,2, ZHANG Bin2,LI Lili1, YUAN Xiaoxue1, GENG Meimei1, LUO Jiajie2. Effects of soybean isoflavones on reproductive organ development and biochemical indices of male Xiang pigs[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 477-484.
[7] YE Yue, YE Ming, ZHANG Rong, CAI Zhenyu, HU Shiming, LIU Chaixia. Effects of Bacillus preparation on carcass performance and intestinal microflora of Avian broiler chicken.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 305-310.
[8] LIU Man-zi,LENG Xiang-jun,LI Xiao-qin,XIAO Chang-wu,CHEN Dao-ren. Effects of azomite on growth performance,intestinal digestive enzyme activities and serum nonspecific immuneof grass carp  (Ctenopharyngodon idella)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(3): 312-318.
[9] TANG Sheng-qiu,DONG Xiao-ying,CHEN Jian-rong,DU Xiong-wei,LIU Hou-sen. Effects of dietary glutamine supplementation on growth performance,nutrient utilization efficiency and digestive organ development in Lingnan yellow broilers[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(2): 203-211.
[10] CHEN Ru- hai1,ZHAN Liang- tong1,CHEN Yun- min1,HU Hong-zhi2. Vertical distributions of heavy metals in bottom sediment in Xi-xi national wetland .[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2010, 36(5): 578-584.
[11] ZHU Huan-Chao, SHEN Jian-Guo, WANG Zhao-De, LIN Yuan, ZHANG Zhi-Jian. [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2009, 35(4): 450-459.