Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (2): 237-242    DOI: 10.3785/j.issn.1008-9209.2018.03.131
Animal sciences & veterinary medicine     
Effect of c.362277T C mutation on the expression of luciferase in chicken GNAS gene
Huanhuan WANG(),Lei ZHANG,Ying GE,Dandan SONG,Lifeng LOU,Xuedong ZHANG()
Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
Download: HTML   HTML (   PDF(3061KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to analyze the effect of ENSGALT00000062075.1:c.36-2277T>C mutation on the expression of transcriptional regulation in chicken GNAS gene, this study collected blood DNA samples from black-bone chicken and barred chicken to construct different genotypic plasmids of c.36-2277T>C mutation, and detected the expression of dual-luciferase reporter analysis system after transfecting chicken embryo fibroblasts. The result showed that all barred chicken samples belonged to TT genotypes and all black-bone chicken samples were CC genotypes. The section from 175 bp upstream to 818 bp downstream of c.36-2277T>C mutation had significantly transcript enhancing activity (P<0.01). The activity of CC genotype was significantly higher than that of the TT genotype (P<0.000 1). The result of transcript factor prediction showed that the number of TGGCA-binding protein sites was the largest in this 993 bp section, and the adjacent mutations were AP-1 and ER-alpha/T3R-alpha binding sites. The study suggests that the base types of c.36-2277T>C mutation in GNAS gene have an important impact on the process of gene transcription regulation, and this mutation plays the role associated with upstream and downstream binding sites of transcript factors.



Key wordschicken      GNAS gene      mutation      luciferase     
Received: 13 March 2018      Published: 25 April 2019
CLC:  S 831.2  
Corresponding Authors: Xuedong ZHANG     E-mail: wennuan2009@163.com;bigzhengliang@hotmail.com
Cite this article:

Huanhuan WANG,Lei ZHANG,Ying GE,Dandan SONG,Lifeng LOU,Xuedong ZHANG. Effect of c.362277T C mutation on the expression of luciferase in chicken GNAS gene. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 237-242.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2018.03.131     OR     http://www.zjujournals.com/agr/Y2019/V45/I2/237


GNAS基因c.36-2277T>C突变对萤光素酶表达的影响

为分析探讨鸡GNAS基因ENSGALT00000062075.1:c.36-2277T>C突变对转录调控的影响,本试验选择乌骨鸡和芦花鸡血液样本,构建了c.36-2277T>C突变点的不同基因型质粒,并转染鸡胚成纤维细胞后,检测双萤光素酶报告基因分析系统的表达。结果表明:样本芦花鸡均为TT基因型,乌骨鸡均为CC基因型;c.36-2277T>C突变点的上下游-175~+818 bp片段具有显著增强转录活性作用(P<0.01),且CC基因型活性极显著高于TT基因型(P<0.000 1)。转录因子预测结果表明:此993 bp片段中TGGCA结合蛋白位点数量最多;紧邻突变点分别为AP-1和ER-alpha/T3R-alpha结合位点。研究认为,GNAS基因c.36-2277T>C突变点的碱基类型会对基因转录调控进程产生重要影响,且该突变可能是通过与上下游转录因子结合位点共同作用来发挥效用。


关键词: 鸡,  GNAS基因,  突变,  萤光素酶 
Fig. 1 Genomic position of mutation and the sequencing results
Fig. 2 Electrophoretic results of plasmid PCR
Fig. 3 Detection results of luciferase activity
Fig. 4 993 bp upstream and downstream sequences of the mutation and the transcript factors on the sequence
[1]   WEINSTEIN L S , LIU J , SAKAMOTO A , et al . Minireview: GNAS: normal and abnormal functions. Endocrinology, 2004,145(12):5459-5464.
[2]   BOYCE A M , FLORENZANO P , CASTRO L F DE , et al . Fibrous dysplasia/McCune-Albright syndrome. Seattle, US: University of Washington, 2015:1993-2019.
[3]   LEMOS M C , THAKKER R V . GNAS mutations in pseudohypoparathyroidism type 1a and related disorders. Human Mutation, 2015,36(1):11-19.
[4]   王欢欢,陈美玲,楼立峰,等 .鸡GNAS基因启动子突变及其与肤色性状的相关性.畜牧兽医学报,2016,47(12):2354-2361.
WANG H H , CHEN M L , LOU L F , et al . GNAS gene promoter mutation in chicken and the correlation with skin color traits. Acta Veterinaria et Zootechnica Sinica, 2016,47(12):2354-2361. (in Chinese with English abstract)
[5]   OGINO S , GULLEY M L , DUNNEN J T DEN , et al . Standard mutation nomenclature in molecular diagnostics. Journal of Molecular Diagnostics, 2007,9(1):1-6.
[6]   WEINSTEIN L S , SHENKER A , GEJMAN P V , et al . Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. The New England Journal of Medicine, 1991,325:1688-1695.
[7]   COLLINS M T , SARLIS N J , MERINO M J , et al . Thyroid carcinoma in the McCune-Albright syndrome: contributory role of activating Gs α mutations. The Journal of Clinical Endocrinology & Metabolism, 2003,88(9):4413-4417.
[8]   NGUYEN L P , PAN J L , DINH T T , et al . Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nature Immunology, 2014,16:207-213.
[9]   SOLDNER F , STELZER Y , SHIVALILA C S , et al . Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature, 2016,533:95-99.
[10]   MURTAGH J , MARTIN F , GRONOSTAJSKI R M . The nuclear factor I (NFI) gene family in mammary gland development and function. Journal of Mammary Gland Biology and Neoplasia, 2003,8(2):241-254.
[11]   TIAN T V , GRAF T . CEBPA (CCAAT/enhancer binding protein (C/EBP), alpha). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2015,19(4):249-255.
[12]   COCKERILL P N , BERT A G , JENKINS F , et al . Human granulocyte-macrophage colony-stimulating factor enhancer function is associated with cooperative interactions between AP-1 and NFATp/c. Molecular and Cellular Biology, 1995,15(4):2071-2079.
[13]   YEH J H, LECINE P , NUNES J A , et al . Novel CD28-responsive enhancer activated by CREB/ATF and AP-1 families in the human interleukin-2 receptor α-chain locus. Molecular and Cellular Biology, 2001,21(14):4515-4527.
[1] ZHANG Li, LIU Lixia, DAI Hongwei, CHEN Hong, WANG Rui, YUE Binghui. Single nucleotide polymorphism screening and bioinformatics analysis of myostatin gene in Jingning chicken[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 629-637.
[2] LU Junxian, JIA Xiaoxu, TANG Xiujun, FAN Yanfeng, TANG Mengjun, GAO Yushi, SU Yijun. Genetic diversity of two local Yunnan chicken breeds and their relationships with red jungle fowl[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 385-390.
[3] Li Yongqiang1,2, Wu Meiling1,2, Ma Zhiqing1,2, Feng Juntao1,2, Zhang Xing1,2*. Construction, expression and activities of mutant carboxylesterases from Helicoverpa armigera[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(1): 16-24.
[4] Ge Yansong, Cao Changyu, Wang Lili, Li Nan, Jiang Xiuqing, Li Jinlong*. Analysis of selenocysteine insertion sequence element, structures and functions and expression profiles of selenoprotein T  in chicken[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(1): 9-15.
[5] Zhang Xuedong1*, Li Qinghai1, Zhang Chengxian2, Chen Xianhui2, Lou Lifeng1, Wang Huanhuan1. Mitochondrial DNA control region polymorphisms in Dongxiang blue-eggshell chicken and their evolutionary relatedness with nine domestic Wugu breeds[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(1): 103-110.
[6] YE Yue, YE Ming, ZHANG Rong, CAI Zhenyu, HU Shiming, LIU Chaixia. Effects of Bacillus preparation on carcass performance and intestinal microflora of Avian broiler chicken.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 305-310.