Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (4): 439-450    DOI: 10.3785/j.issn.1008-9209.2021.04.261
作物表型分析技术及应用专题     
多层离散各向异性辐射传输模型在玉米叶面积指数垂直分布反演中的应用
董震1,2(),杨贵军1(),孙林2,杨浩1,朱耀辉1,雷蕾1,陈日强1,张成健1,刘淼1
1.北京农业信息技术研究中心,农业农村部农业遥感机理与定量遥感重点实验室,北京 100097
2.山东科技大学测绘与空间信息学院,山东 青岛 266590
Application of multi-layer discrete anisotropic radiative transfer model in vertical distribution inversion of maize leaf area index
Zhen DONG1,2(),Guijun YANG1(),Lin SUN2,Hao YANG1,Yaohui ZHU1,Lei LEI1,Riqiang CHEN1,Chengjian ZHANG1,Miao LIU1
1.Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture and Rural Affairs, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China
2.College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
 全文: PDF(2268 KB)   HTML
摘要:

为更准确地监测玉米叶面积指数(leaf area index, LAI)垂直分布,以多层离散各向异性辐射传输(discrete anisotropic radiative transfer, DART)模型构建的模拟数据集为基础,提出一种条件约束的LAI垂直分布反演方法。首先,基于3层垂直分布场景,评价DART模型对玉米冠层反射率和光合有效辐射(photosynthetically active radiation, PAR)的模拟效果,并构建相应的模拟数据集。其次,基于模拟数据集构建LAI和PAR单参数反演模型。最后,以单参数反演模型为先验知识,通过求解约束化问题实现基于高光谱植被指数的玉米冠层LAI垂直分布反演。结果表明:相较于单参数反演模型,约束优化条件下的反演模型精度更高。玉米上层LAI反演结果的决定系数(R2)提高0.022,均方根误差(root-mean-square error, RMSE)降低0.016 m2/m2,归一化均方根误差(normalized root-mean-square error, NRMSE)降低1.3%;玉米中层LAI反演结果的R2提高0.08,RMSE降低0.219 m2/m2,NRMSE降低10.1%;玉米下层LAI反演结果的R2提高0.069,RMSE降低0.041 m2/m2,NRMSE降低4.6%。说明利用条件约束优化的方法进行玉米冠层LAI的垂直分布反演,能有效提高反演精度。

关键词: 农业遥感离散各向异性辐射传输模型光合有效辐射叶面积指数垂直分布    
Abstract:

In order to more accurately monitor the vertical distribution of the leaf area index (LAI) of maize, we propose a conditionally constrained LAI vertical distribution inversion method based on the simulation dataset constructed by the discrete anisotropic radiative transfer (DART) model. First, the simulation effects of DART model on canopy reflectance and photosynthetically active radiation (PAR) were evaluated based on the three-layer vertical distribution scenario, and constructed the corresponding simulation dataset with PAR. Second, a single parameter inversion model for LAI and PAR was built based on the simulated dataset. Finally, using the single parameter inversion model as a priori knowledge, the inversion of the vertical distribution of maize canopy LAI based on the hyperspectral vegetation index was realized by solving the constraint problem. The results showed that the accuracy of the constraint optimization inversion model was higher than that of the single parameter inversion model. The coefficient of determination (R2) of LAI inversion results for top layer of maize increased by 0.022, root-mean-square error (RMSE) decreased by 0.016 m2/m2, and normalized root-mean-square error (NRMSE) decreased by 1.3%. The R2 of LAI inversion results for middle layer of maize increased by 0.08, RMSE decreased by 0.219 m2/m2, and NRMSE decreased by 10.1%. The R2 of LAI inversion results for bottom layer of maize increased by 0.069, RMSE decreased by 0.041 m2/m2, and NRMSE decreased by 4.6%. Therefore, it can be concluded that the inversion of vertical distribution of LAI in maize canopy using the conditional constraint optimization method can effectively improve the inversion accuracy.

Key words: agricultural remote sensing    discrete anisotropic radiative transfer model    photosynthetically active radiation    leaf area index    vertical distribution
收稿日期: 2021-04-26 出版日期: 2021-09-02
CLC:  TP 751  
基金资助: 广东省重点领域研发计划(2019B020214002)
通讯作者: 杨贵军     E-mail: jmhshdzh@163.com;yanggj@nercita.org.cn
作者简介: 董震(https://orcid.org/0000-0002-0666-1972),E-mail:jmhshdzh@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
董震
杨贵军
孙林
杨浩
朱耀辉
雷蕾
陈日强
张成健
刘淼

引用本文:

董震,杨贵军,孙林,杨浩,朱耀辉,雷蕾,陈日强,张成健,刘淼. 多层离散各向异性辐射传输模型在玉米叶面积指数垂直分布反演中的应用[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 439-450.

Zhen DONG,Guijun YANG,Lin SUN,Hao YANG,Yaohui ZHU,Lei LEI,Riqiang CHEN,Chengjian ZHANG,Miao LIU. Application of multi-layer discrete anisotropic radiative transfer model in vertical distribution inversion of maize leaf area index. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 439-450.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.04.261        http://www.zjujournals.com/agr/CN/Y2021/V47/I4/439

图1  玉米3层垂直分布模拟场景
图2  DART模型输入参数敏感性分析结果LAI:叶面积指数;Sz:太阳天顶角;LAD:叶倾角分布;LCC:叶片叶绿素含量;H:株高。
图3  不同叶倾角分布(LAD)和体素大小(Vsize)组合下PAR模拟结果精度评价
图4  各波长处反射率模拟结果的R2
图5  冠层反射率模拟结果精度评价
图6  PAR模拟结果精度评价

分层

Layer

回归模型

Regression model

模拟数据集

Simulated dataset

实测数据集

Measured dataset

RMSE/(m2/m2)NRMSE/%RMSE/(m2/m2)NRMSE/%
上层 Top layery=e[4.12+271.87×DV560,620]0.0846.40.1219.9
中层 Middle layery=e[31.49+31.16×R920,970]0.36514.20.65619.4
下层 Bottom layery=e[16.66+17.74×R790,950]0.3389.50.58014.9
表1  LAIc单参数反演模型筛选结果

分层

Layer

回归模型

Regression model

模拟数据集

Simulated dataset

实测数据集

Measured dataset

RMSENRMSERMSENRMSE
上层 Top layery=e[24.31+51.09×ND530,720]3.118.13.869.4
中层 Middle layery=e[2.33118.8×DV790,850]1.359.62.4115.9
下层 Bottom layery=e[43.5542.24×R780,920]0.799.31.0813.7
表2  PARf单参数反演模型筛选结果 (%)
图7  不同模型下LAI反演结果

反演模型

Inversion model

分层

Layer

R2RMSE/(m2/m2)NRMSE/%

单参数模型

Single parameter model

上层

Top layer

0.9000.1219.9

中层

Middle layer

0.6940.64229.7

下层

Bottom layer

0.5550.37535.0

约束化模型

Constrained model

上层

Top layer

0.9220.1058.6

中层

Middle layer

0.7740.42319.6

下层

Bottom layer

0.6240.33430.4
表3  LAI反演模型的精度评价
1 WATSON D J. Comparative physiological studies on the growth of field crops: Ⅰ. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Botany, 1947(1):41-76.
2 ROUSE J W JR, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the great plains with ERTS//Third ERTS Symposium. [S.
l.: s. n.], 1973.
3 JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 1969,50(4):663-666.
4 CLEVERS J, KOOISTRA L, BRANDE M VAN DEN. Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sensing, 2017,9(5):405. DOI:10.3390/rs9050405
doi: 10.3390/rs9050405
5 SUN Y H, REN H Z, ZHANG T Y, et al. Crop leaf area index retrieval based on inverted difference vegetation index and NDVI. IEEE Geoscience and Remote Sensing Letters, 2018,15(11):1662-1666. DOI:10.1109/LGRS.2018.2856765
doi: 10.1109/LGRS.2018.2856765
6 HABOUDANE D. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 2004,90(3):337-352. DOI:10.1016/j.rse.2003.12.013
doi: 10.1016/j.rse.2003.12.013
7 JIN X L, YANG G J, XU X G, et al. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sensing, 2015,7(10):13251-13272. DOI:10.3390/rs71013251
doi: 10.3390/rs71013251
8 GAO S, NIU Z, HUANG N, et al. Estimating the leaf area index, height and biomass of maize using HJ-1 and RADARSAT-2. International Journal of Applied Earth Observation and Geoinformation, 2013,24(1):1-8. DOI:10.1016/j.jag.2013.02.002
doi: 10
9 CANISIUS F, FERNANDES R. ALOS PALSAR L-band polarimetric SAR data and in situ measurements for leaf area index assessment. Remote Sensing Letters, 2012,3(3/4/5):221-229. DOI:10.1080/01431161.2011.559288
doi: 10.1080/01431161.2011.559288
10 VERHOEF W. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sensing of Environment, 1984,16(2):125-141.
11 GASTELLU-ETCHEGORRY J P, DEMAREZ V, PINEL V, et al. Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sensing of Environment, 1996,58(2):131-156. DOI:10.1016/0034-4257(95)00253-7
doi: 10.1016/0034-4257(95)00253-7
12 KUUSK A, NILSON T. A directional multispectral forest reflectance model. Remote Sensing of Environment, 2000,72(2):244-252. DOI:10.1016/S0034-4257(99)00111-X
doi: 10.1016/S0034-4257(99)00111-X
13 CHEN J M, LEBLANC S G. A four-scale bidirectional reflectance model based on canopy architecture. IEEE Transactions on Geoscience and Remote Sensing, 1997,35(5):1316-1337. DOI:10.1109/36.628798
doi: 10.1109/36.628798
14 YANG G J, ZHAO C J, LIU Q, et al. Inversion of a radiative transfer model for estimating forest LAI from multisource and multiangular optical remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(3):988-1000. DOI:10.1109/TGRS.2010.2071416
doi: 10.1109/TGRS.2010.2071416
15 FANG H L, LIANG S L, KUUSK A. Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model. Remote Sensing of Environment, 2003,85(3):257-270. DOI:10.1016/S0034-4257(03)00005-1
doi: 10.1016/S0034-4257(03)00005-1
16 MYNENI R B, HOFFMAN S, KNYAZIKHIN Y, et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 2001,83(1/2):214-231. DOI:10.1016/S0034-4257(02)00074-3
doi: 10.1016/S0034-4257(02)00074-3
17 YANG W Z, TAN B, HUANG D, et al. MODIS leaf area index products: from validation to algorithm improvement. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(7):1885-1898. DOI:10.1109/TGRS.2006.871215
doi: 10.1109/TGRS.2006.871215
18 YANG B, KNYAZIKHIN Y, M?TTUS M, et al. Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: theoretical basis. Remote Sensing of Environment, 2017,198:69-84. DOI:10.1016/j.rse.2017.05.033
doi: 10.1016/j.rse.2017.05.033
19 BACOUR C, BARET F, BéAL D, et al. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: principles and validation. Remote Sensing of Environment, 2006,105(4):313-325. DOI:10.1016/j.rse.2006.07.014
doi: 10.1016/j.rse.2006.07.014
20 DARVISHZADEH R, SKIDMORE A, SCHLER F M, et al. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sensing of Environment, 2008,112(5):2592-2604. DOI:10.1016/j.rse.2007.12.003
doi: 10.1016/j.rse.2007.12.003
21 HOUBORG R, MCCABE M, CESCATTI A, et al. Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC). Remote Sensing of Environment, 2015,159:203-221. DOI:10.1016/j.rse.2014.12.008
doi: 10.1016/j.rse.2014.12.008
22 王强,刘丹丹,张为成.基于DART模型森林结构参数反演.黑龙江工程学院学报(自然科学版),2012,26(2):32-35. DOI:10.19352/j.cnki.issn1671-4679.2012.02.009
WANG Q, LIU D D, ZHANG W C. Retrieval of conifer LAI based on the multiple-angle model. Journal of Heilongjiang Institute of Technology, 2012,26(2):32-35. (in Chinese with English abstract)
doi: 10.19352/j.cnki.issn1671-4679.2012.02.009
23 ASIM B, RANDOLPH W, VALERIE T, et al. Investigating the utility of wavelet transforms for inverting a 3-D radiative transfer model using hyperspectral data to retrieve forest LAI. Remote Sensing, 2013,5(6):2639-2659. DOI:10.3390/rs5062639
doi: 10.3390/rs5062639
24 LIU N, XIAO Z Q, SHI H Y, et al. A method for estimating leaf area index from Landsat data based on Dart model and Gaussian process//2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). New York, U.S.: IEEE, 2019.
25 HIROSE T. Development of the Monsi-Saeki theory on canopy structure and function. Annals of Botany, 2005,95(3):483-494. DOI:10.1093/aob/mci047
doi: 10.1093/aob/mci047
26 靳华安,王锦地,柏延臣,等.基于作物生长模型和遥感数据同化的区域玉米产量估算.农业工程学报,2012,28(6):162-173. DOI:10.3969/j.issn.1002-6819.2012.06.027
JIN H A, WANG J D, BO Y C, et al. Regional maize yield estimation based on crop growth model and remote sensing data assimilation. Transactions of the CSAE, 2012,28(6):162-173. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2012.06.027
27 于海洋.基于作物生长模型的吉林西部地块玉米产量遥感估算研究.长春:吉林大学,2020.
YU H Y. Research on remote sensing estimation of maize yield in plots in west Jilin based on crop growth model. Changchun: Jilin University, 2020. (in Chinese with English abstract)
28 姚延娟,范闻捷,刘强,等.玉米全生长期叶面积指数收获测量法的改进.农业工程学报,2010,26(8):189-194. DOI:10.3969/j.issn.1002-6819.2010.08.032
YAO Y J, FAN W J, LIU Q, et al. Improved harvesting method for corn LAI measurement in corn whole growth stages. Transactions of the CSAE, 2010,26(8):189-194. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2010.08.032
29 DUTHOIT S, DEMAREZ V, GASTELLU-ETCHEGORRY J P, et al. Assessing the effects of the clumping phenomenon on BRDF of a maize crop based on 3D numerical scenes using DART model. Agricultural and Forest Meteorology, 2008,148(8/9):1341-1352. DOI:10.1016/j.agrformet.2008.03.011
doi: 10.1016/j.agrformet.2008.03.011
30 GUILLEVIC P C, BORK-UNKELBACH A, GOTTSCHE F M, et al. Directional viewing effects on satellite land surface temperature products over sparse vegetation canopies: a multisensor analysis. IEEE Geoscience and Remote Sensing Letters, 2013,10(6):1464-1468. DOI:10.1109/LGRS.2013.2260319
doi: 10.1109/LGRS.2013.2260319
31 MALENOVSKY Z, HOMOLOVá L, ZURITA-MILLA R, et al. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sensing of Environment, 2013,131(8):85-102. DOI:10.1016/j.rse.2012.12.015
doi: 10.1016/j.rse.2012.12.015
32 SALTELLI A, TARANTOLA S, CHAN P S. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 1999,41(1):39-56. DOI:10.1080/00401706.1999.10485594
doi: 10.1080/00401706.1999.10485594
33 祁红彦,周广胜,许振柱.北方玉米冠层光合有效辐射垂直分布及影响因子分析.气象与环境学报,2008,24(1):22-26. DOI:10.3969/j.issn.1673-503X.2008.01.006
QI H Y, ZHOU G S, XU Z Z. Vertical distribution characteristics of photosynthetically active radiation in maize canopy and its controlling factors. Journal of Meteorology and Environment, 2008,24(1):22-26. (in Chinese with English abstract)
doi: 10.3969/j.issn.1673-503X.2008.01.006
34 祁红彦,周广胜,李荣平,等.玉米群体消光系数的动态变化及其模拟.安徽农业科学,2011,39(29):17826-17829. DOI:10.3969/j.issn.0517-6611.2011.29.028
QI H Y, ZHOU G S, LI R P, et al. Dynamic variation of extinction coefficient of corn population and its simulation. Journal of Anhui Agricultural Sciences, 2011,39(29):17826-17829. (in Chinese with English abstract)
doi: 10.3969/j.issn.0517-6611.2011.29.028
35 TYRRELL ROCKAFELLAR R. Lagrange multipliers and optimality. SIAM Review, 1993,35(2):183-238. DOI:10.1137/1035044
doi: 10.1137/1035044
36 VICARI M B, PISEK J, DISNEY M. New estimates of leaf angle distribution from terrestrial LiDAR: comparison with measured and modelled estimates from nine broadleaf tree species. Agricultural & Forest Meteorology, 2019,264:322-333. DOI:10.1016/j.agrformet.2018.10.021
doi: 10.1016/j.agrformet.2018.10.021
37 RYU Y, SONNENTAG O, NILSON T, et al. How to quantify tree leaf area index in an open savanna ecosystem: a multi-instrument and multi-model approach. Agricultural & Forest Meteorology, 2010,150:63-76. DOI:10.1016/j.agrformet.2009.08.007
doi: 10.1016/j.agrformet.2009.08.007
38 CHEN J M, CIHLAR J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sensing of Environment, 1996,55(2):153-162. DOI:10.1016/0034-4257(95)00195-6
doi: 10.1016/0034-4257(95)00195-6
39 翟羽娟,张艳红,刘兆礼,等.基于高光谱影像的玉米LAI反演模型研究.江西农业学报,2015,27(10):58-61. DOI:10.3969/j.issn.1001-8581.2015.10.013
ZHAI Y J, ZHANG Y H, LIU Z L, et al. Study on inversion model of maize LAI based on hyperspectral images. Acta Agriculturae Jiangxi, 2015,27(10):58-61. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-8581.2015.10.013
40 程雪,贺炳彦,黄耀欢,等.基于无人机高光谱数据的玉米叶面积指数估算.遥感技术与应用,2019,34(4):775-784. DOI:10.19386/j.cnki.jxnyxb.2015.10.013
CHENG X, HE B Y, HUANG Y H, et al. Estimation of corn leaf area index based on UAV hyperspectral image. Remote Sensing Technology and Application, 2019,34(4):775-784. (in Chinese with English abstract)
doi: 10.19386/j.cnki.jxnyxb.2015.10.013
41 束美艳,陈向阳,王喜庆,等.基于高光谱数据的玉米叶面积指数和生物量评估.智慧农业(中英文),2021,3(1):29-39. DOI:10.12133/j.smartag.2021.3.1.202102-SA004
SHU M Y, CHEN X Y, WANG X Q, et al. Evaluation of maize leaf area index and biomass based on hyperspectral data. Smart Agriculture, 2021,3(1):29-39. (in Chinese with English abstract)
doi: 10.12133/j.smartag.2021.3.1.202102-SA004
42 汪涛,董斌,黄文江,等.玉米冠层内光合有效辐射和叶面积指数垂直分布模拟.玉米科学,2016,24(2):120-128. DOI:10.13597/j.cnki.maize.science.20160222
WANG T, DONG B, HUANG W J, et al. Simulation of photosynthetically active radiation and leaf area index vertical distribution in maize canopy. Journal of Maize Sciences, 2016,24(2):120-128. (in Chinese with English abstract)
doi: 10.13597/j.cnki.maize.science.20160222
43 张明政.基于多层PROSAIL模型的玉米冠层叶面积指数垂直分布反演.山东,泰安:山东农业大学,2016.
ZHANG M Z. Retrieval of the vertical distribution of corn canopy leaf area index based on the multilayer PROSAIL model. Tai’an, Shandong: Shandong Agricultural University, 2016. (in Chinese with English abstract)
[1] 张宁,张庆国,于海敬,程梦笛,董世杰. 作物生长模拟模型的参数敏感性分析[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 107-115.
[2] 周繇. 长白山区野生木本观赏树木调查[J]. 浙江大学学报(农业与生命科学版), 2004, 30(5): 524-535.
[3] 王秀珍  黄敬峰  李云梅  沈掌泉  王人潮. 高光谱数据与水稻农学参数之间的相关分析[J]. 浙江大学学报(农业与生命科学版), 2002, 28(3): 283-288.