Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (6): 719-728    DOI: 10.3785/j.issn.1008-9209.2021.04.121
研究论文     
柑橘果实大小与质量的遗传分析和数量性状位点定位
罗艾(),龚桂芝,彭祝春,杨程,常珍珍,洪棋斌()
西南大学柑桔研究所/中国农业科学院柑桔研究所,重庆 400712
Genetic analysis and quantitative trait locus mapping of citrus fruit size and mass
Ai LUO(),Guizhi GONG,Zhuchun PENG,Cheng YANG,Zhenzhen CHANG,Qibin HONG()
Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
 全文: PDF(4098 KB)   HTML
摘要:

为探究柑橘果实大小与质量的遗传调控机制,开展了果实大小和质量的数量性状位点(quantitative trait locus, QTL)定位分析,以挖掘调控基因。以‘晚蜜2号’和‘梨橙2号’的94株F1代材料为分离群体,采用保守同源序列(conserved ortholog sequence, COS)和微卫星标记即简单重复序列(simple sequence repeat, SSR)构建遗传连锁图谱,测定单株成熟果实大小和质量等性状,并进行遗传传递力分析和QTL定位分析。结果表明:本研究构建了一张包含201个标记、10个连锁群,总长为1 194.5 cM的柑橘遗传连锁图谱;定位到与果实质量相关的4个QTLs,与横径相关的3个QTLs,与纵径相关的4个QTLs,都分别位于WL3和WL8连锁群上。通过对这些区域内的编码基因进行挖掘,发现了一些与果实发育相关的候选基因:GATA转录因子、生长素响应因子(auxin response factor, ARF)和GDSL酯酶。本研究鉴定到的QTLs和候选基因可为柑橘果实大小和质量的遗传研究、育种和物种改良提供理论参考和分子标记工具。

关键词: 柑橘果实大小果实质量遗传图谱数量性状位点    
Abstract:

In order to explore the genetic regulation mechanism of citrus fruit size and mass, mapping analysis of quantitative trait loci (QTLs) of fruit size and mass was carried out to find regulatory genes. The segregating population in this study was the F1 generation with a total of 94 plants, from the cross of ‘Wanmi 2’ [Citrus unshiu (Mark.) Marc.×C. sinensis (L.) Osb.] and a local sweet orange cultivar ‘Licheng 2’ [C. sinensis (L.) Osb.]. Conserved ortholog sequence (COS) and simple sequence repeat (SSR) markers were used to construct a genetic linkage map of the segregating population. Fruit size and mass were measured at the full maturing stage. Genetic transmitting ability analysis and QTL mapping were carried out. The results showed that this study constructed a genetic linkage map, which contained 201 markers, 10 linkage groups, with a total length of 1 194.5 cM. Four QTLs related to citrus fruit mass, three QTLs related to citrus transverse diameter, and four QTLs related to citrus longitudinal diameter were detected. All the QTLs were distributed on WL3 and WL8 linkage groups. A batch of functional genes (GATA transcription factor, auxin response factor and GDSL esterase) related to the development of citrus fruits were identified according to the functional annotations of the genes in the genome defined by the markers. The QTLs located and the candidate genes identified in this study will be helpful for citrus breeding and theoretical research.

Key words: citrus    fruit size    fruit mass    genetic map    quantitative trait locus (QTL)
收稿日期: 2021-04-12 出版日期: 2021-12-25
CLC:  S 666.1  
基金资助: 国家重点研发计划(2019YFD1001402);国家科技支撑计划(2013BAD02B02)
通讯作者: 洪棋斌     E-mail: 1012502243@qq.com;hongqb@sina.com
作者简介: 罗艾(https://orcid.org/0000-0001-6100-6279),E-mail:1012502243@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
罗艾
龚桂芝
彭祝春
杨程
常珍珍
洪棋斌

引用本文:

罗艾,龚桂芝,彭祝春,杨程,常珍珍,洪棋斌. 柑橘果实大小与质量的遗传分析和数量性状位点定位[J]. 浙江大学学报(农业与生命科学版), 2021, 47(6): 719-728.

Ai LUO,Guizhi GONG,Zhuchun PENG,Cheng YANG,Zhenzhen CHANG,Qibin HONG. Genetic analysis and quantitative trait locus mapping of citrus fruit size and mass. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(6): 719-728.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.04.121        http://www.zjujournals.com/agr/CN/Y2021/V47/I6/719

null

**表示在P<0.01水平极显著相关。

Double asterisks (**) indicate extremely significant correlations at the 0.01 probability level.

  
1 周常勇.中国果树科学与实践:柑橘.西安:陕西科学技术出版社,2020:34-38.
ZHOU C Y. Chinese Fruit Science and Practice: Citrus. Xi’an: Shaanxi Science and Technology Press,2020:34-38. (in Chinese)
2 杨晓明.柑橘亚科植物系统发育基因组学及野生枸橼、宜昌橙谱系地理学研究.武汉:华中农业大学,2017. DOI:10.1007/s11295-017-1113-4
YANG X M. The phylogenomic of aurantioide and phylogeography of wild citron(Citrus medica) and Ichang papeda (Citrus ichangensis). Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract)
doi: 10.1007/s11295-017-1113-4
3 YU Y, CHEN C X, GMITTER F G, Jr, et al. QTL mapping of mandarin (Citrus reticulata) fruit characters using high-throughput SNP markers. Tree Genetics & Genomes, 2016,12(4):77. DOI:10.1007/s11295-016-1034-7
doi: 10.1007/s11295-016-1034-7
4 邓秀新.柑橘产业发展趋势与桂林柑橘品种结构调整.南方园艺,2020,31(6):1-4. DOI:10.3969/j.issn.1674-5868.2020.06.001
DENG X X. The development trend of citrus industry and the adjustment of citrus variety structure in Guilin. Southern Horticulture, 2020,31(6):1-4. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-5868.2020.06.001
5 RUIZ C, BRETO M P, ASíNS M J. A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica, 2000,112(1):89-94. DOI:10.1023/A:1003992719598
doi: 10.1023/A:1003992719598
6 QAIM M. Role of new plant breeding technologies for food security and sustainable agricultural development. Applied Economic Perspectives and Policy, 2020,42(2):129-150. DOI:10.1002/aepp.13044
doi: 10.1002/aepp.13044
7 IMAI A, YOSHIOKA T, HAYASHI T. Quantitative trait locus (QTL) analysis of fruit-quality traits for mandarin breeding in Japan. Tree Genetics & Genomes, 2017,13(4):79. DOI:10.1007/s11295-017-1162-8
doi: 10.1007/s11295-017-1162-8
8 王炯.基于COS Marker构建柑橘连锁图谱及作图群体的光合特性研究.重庆:西南大学,2017. DOI:10.25165/j.ijabe.20181102.3189
WANG J. Citrus linkage map construction based on COS marker and photosynthetic characteristics research of the mapping population. Chongqing: Southwest University, 2017. (in Chinese with English abstract)
doi: 10.25165/j.ijabe.20181102.3189
9 OOIJEN J W VAN. JoinMap? 4.0: software for the calculation of genetic linkage maps in experimental populations. Wageningen, the Netherlands: Kyazma B V, 2006.
10 陈克玲,陈力耕.柑橘果形遗传的研究.西南农业大学学报,1994,16(2):120-123. DOI:10.3390/plants9020196
CHEN K L, CHEN L G. The heredity of fruit shape in citrus. Journal of Southwest Agricultural University, 1994,16(2):120-123. (in Chinese with English abstract)
doi: 10.3390/plants9020196
11 OOIJEN J W VAN. MapQTL? 6.0: software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, the Netherlands: Kyazma B V, 2009.
12 CURTOLO M, CRISTOFANI-YALY M, GAZAFFI R, et al. QTL mapping for fruit quality in Citrus using DArTseq markers. BMC Genomics, 2017,18:289. DOI:10.1186/s12864-017-3629-2
doi: 10.1186/s12864-017-3629-2
13 DE OLIVEIRA A C, BASTIANEL M, CRISTOFANI-YALY M, et al. Development of genetic maps of the citrus varieties ‘Murcott’ tangor and ‘Pêra’ sweet orange by using fluorescent AFLP markers. Journal of Applied Genetics, 2007,48:219-231. DOI:10.1007/BF03195216
doi: 10.1007/BF03195216
14 RUIZ C, ASINS M J. Comparison between Poncirus and Citrus genetic linkage maps. Theoretical and Applied Genetics, 2003,106:826-836. DOI:10.1007/s00122-002-1095-x
doi: 10.1007/s00122-002-1095-x
15 王娟,兰海燕.GATA转录因子对植物发育和胁迫响应调控的研究进展.植物生理学报,2016,52(12):1785-1794. DOI:10.13592/j.cnki.ppj.2016.0259
WANG J, LAN H Y. Advances in regulation of GATA transcription factor to plant development and stress responses. Plant Physiology Journal, 2016,52(12):1785-1794. (in Chinese with English abstract)
doi: 10.13592/j.cnki.ppj.2016.0259
16 ULMASOV T, HAGEN G, GUILFOYLE T J. ARF1, a transcription factor that binds to auxin response elements. Science, 1997,276(5320):1865-1868. DOI:10.1126/science.276.5320.1865
doi: 10.1126/science.276.5320.1865
17 梅丽华.生长素响应因子基因SlARF10在番茄果实发育过程中的功能研究.重庆:重庆大学,2017. DOI:10.1101/253237
MEI L H. Functional studies of auxin response factor gene SlARF10 in tomato fruit development. Chongqing: Chongqing University, 2017. (in Chinese with English abstract)
doi: 10.1101/253237
18 ZHANG B C, ZHANG L J, FENG L, et al. Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase. Nature Plants, 2017,3(3):17017. DOI:10.1038/nplants.2017.17
doi: 10.1038/nplants.2017.17
19 FANG C Y, ZHANG X Q, ZHANG L, et al. Identification of palmitoylated transitional endoplasmic reticulum ATPase by proteomic technique and pan antipalmitoylation antibody. Journal of Proteome Research, 2016,15(3):956-962. DOI:10.1021/acs.jproteome.5b00979
doi: 10
20 KOBE B, KAJAVA A V. The leucine-rich repeat as a protein recognition motif. Current Opinion in Structural Biology, 2001,11(6):725-732. DOI:10.1016/S0959-440X(01)00266-4
doi: 10.1016/S0959-440X(01)00266-4
21 HARRIS S, POWERS S, MONTEAGUDO-MERA A, et al. Determination of the prebiotic activity of wheat arabino-galactan peptide (AGP) using batch culture fermentation. European Journal of Nutrition, 2020,59(1):297-307. DOI:10.1007/s00394-019-01908-7
doi: 10.1007/s00394-019-01908-7
22 SPILLER M P, GUO L, WANG Q, et al. Mitochondrial Tim9 protects Tim10 from degradation by the protease Yme1. Bioscience Reports, 2015,35(3):e00193. DOI:10.1042/BSR20150038
doi: 10.1042/BSR20150038
23 范敏,金黎平,刘庆昌,等.马铃薯PPR蛋白家族基因SoDIPPR的克隆及其在干旱条件下的表达特征分析.中国农业科学,2008,41(8):2249-2257. DOI:10.3864/j.issn.0578-1752.2008.08.005
FAN M, JIN L P, LIU Q C, et al. Cloning of SoDIPPR gene of pentatricopeptide repeat (PPR) protein family in potato and analysis of expression characteristics under drought conditions. Scientia Agricultura Sinica, 2008,41(8):2249-2257. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2008.08.005
24 SANDLER L, HIRAIZUMI Y, SANDLER I. Meiotic drive in natural populations of Drosophila melanogaster. Ⅰ. The cytogenetic basis of segregation-distortion. Genetics, 1959,44(2):233-241. DOI:10.1093/genetics/44.2.233
doi: 10.1093/genetics/44.2.233
25 DE OLIVEIRA R P, CRISTOFANI M, MACHADO M A, et al. Genetic linkage maps of ‘Pêra’ sweet orange and ‘Cravo’ mandarin with RAPD markers. Pesquisa Agropecuária Brasileira, 2004,39(2):159-165. DOI:10.1590/S0100-204X2004000200009
doi: 10.1590/S0100-204X2004000200009
26 ZHAO J L, HAN D D, SHI K T, et al. Influence of epistatic segregation distortion loci on genetic marker linkages in Japanese flounder. Genomics, 2018,110(1):59-66. DOI:10.1016/j.ygeno.2017.08.006
doi: 10.1016/j.ygeno.2017.08.006
27 SONG X L, SUN X Z, ZHANG T Z. Segregation distortion and its effect on genetic mapping in plants. Chinese Journal of Agricultural Biotechnology, 2006,3(3):163-169. DOI:10.1079/CJB2006110
doi: 10
28 GARCíA M, ASíNS M J, CARBONELL E A. QTL analysis of yield and seed number in Citrus. Theoretical & Applied Genetics, 2000,101(3):487-493. DOI:10.1007/s001220051507
doi: 10.1007/s001220051507
29 BUDAHN H, PETERKA H, MOUSA M A A, et al. Molecular mapping in oil radish (Raphanus sativus L.) and QTL analysis of resistance against beet cyst nematode (Heterodera schachtii). Theoretical & Applied Genetics, 2009,118(4):775-782. DOI:10.1007/s00122-008-0937-6
doi: 10.1007/s00122-008-0937-6
30 阮成江,何祯祥,钦佩.我国农作物QTL定位研究的现状和进展.植物学通报,2003,20(1):10-22. DOI:10.3969/j.issn.1674-3466.2003.01.002
RUAN C J, HE Z X, QIN P. Research advancements on crop QTL mapping in China. Chinese Bulletin of Botany, 2003,20(1):10-22. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-3466.2003.01.002
[1] 朱泰霖,王慧心,陈杰标,王岳,曹锦萍,李鲜,孙崇德. 不同品种柑橘果实的类黄酮分离纯化及其抗氧化活性研究[J]. 浙江大学学报(农业与生命科学版), 2021, 47(6): 704-718.
[2] 王彤,叶子茂,刘梦雨,申晚霞,赵晓春. 多甲氧基黄酮在不同宽皮柑橘品种组织中的积累变化规律[J]. 浙江大学学报(农业与生命科学版), 2021, 47(6): 729-735.
[3] 束美艳,魏家玺,周也莹,董奇宙,陈浩翀,黄智刚,马韫韬. 基于朴素贝叶斯分类的柑橘叶片溃疡病诊断[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 429-438.
[4] 曾一冰,蒋立强,李国华,刘蕊,李红叶. 柑橘黑斑病菌与柚黑斑病菌对苯并咪唑类杀菌剂的抗性及其分子机制[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 699-706.
[5] 余继华, 黄振东, 张敏荣, 鹿连明, 陈国庆, 陶健, 杨晓, 钟列权. 亚洲柑橘木虱带菌率的周年变化动态[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 89-94.
[6] 何美仙,符雨诗,阮若昕,李红叶. 柑橘链格孢褐斑病菌对4种新型杀菌剂敏感性评价[J]. 浙江大学学报(农业与生命科学版), 2016, 42(5): 535-.
[7] 鹿连明, 程保平, 杜丹超, 胡秀荣, 蒲占湑, 陈国庆. 蜡蚧菌的遗传多样性及其对柑橘木虱的致病性[J]. 浙江大学学报(农业与生命科学版), 2015, 41(1): 34-43.
[8] 蒋蓓蓓, 余世洲, 肖炳光, 楼向阳, 徐海明. 基于四交群体的连锁图谱构建(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 387-396.
[9] 鹿连明, 杜丹超, 程保平, 胡秀荣, 张利平, 陈国庆. 柑橘黄龙病菌亚洲种外膜蛋白基因的遗传变异分析[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 125-132.
[10] 高玉龙1, 桂毅杰2, 肖炳光1,薄世平2, 严广号2, 樊龙江2. 烟草MITE位点间多态性 (IMP) 标记开发及其遗传作图应用[J]. 浙江大学学报(农业与生命科学版), 2012, 38(6): 655-661.
[11] 史舟  管彦良  王援高  吴曙雯. 基于GIS的县级柑橘适宜性评价咨询系统研制[J]. 浙江大学学报(农业与生命科学版), 2002, 28(5): 492-494.
[12] 刘淑芳  陈力耕  陈大明  徐昌杰. 柑橘LEAFY同源基因片段的克隆及分析[J]. 浙江大学学报(农业与生命科学版), 2001, 27(3): 297-300.
[13] 陈钢  Howard W Rines  Deon D Stuthman  Kurt J Leonard  丁守仁. 燕麦对冠锈病水平抗性的QTL定位[J]. 浙江大学学报(农业与生命科学版), 2001, 27(2): 151-155.
[14] 曹钢强  朱军  何慈信  高用明  吴平. 水稻穗长上位性效应和QE互作效应的QTL遗传研究[J]. 浙江大学学报(农业与生命科学版), 2001, 27(1): 55-61.