Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (4): 451-463    DOI: 10.3785/j.issn.1008-9209.2021.03.121
作物表型分析技术及应用专题     
基于深度学习方法和RGB影像的玉米雄穗分割
余汛1,2(),王哲1,景海涛1(),金秀良2(),聂臣巍2,白怡2,王铮3
1.河南理工大学测绘与国土信息工程学院,河南 焦作 454000
2.中国农业科学院作物科学研究所,北京 100081
3.成都理工大学能源学院,成都 610059
Maize tassel segmentation based on deep learning method and RGB image
Xun YU1,2(),Zhe WANG1,Haitao JING1(),Xiuliang JIN2(),Chenwei NIE2,Yi BAI2,Zheng WANG3
1.School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
2.Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
3.College of Energy, Chengdu University of Technology, Chengdu 610059, China
 全文: PDF(8614 KB)   HTML
摘要:

为检验深度学习方法对不同品种玉米雄穗在不同生育时期的分割精度和稳定性,利用2019年7月—9月于河南省新乡市中国农业科学院试验基地内采集的RGB影像,通过构建以轻量级网络为特征提取层的PspNet、DeepLab V3+、SegNet和U-Net 4种模型,比较不同模型对玉米雄穗分割精度的差异。结果显示:U-Net模型对不同生育时期玉米品种的雄穗分割精度最高(mIoU=0.780)。该模型在玉米雄穗不同生长阶段的分割精度总体上较好(mIoU=0.703~0.798),其中在完全抽雄期的分割精度最高(mIoU=0.798);U-Net模型对不同玉米品种的雄穗分割精度差异明显,但对所有玉米品种雄穗的平均分割精度较高(mIoU=0.749),其中对郑单958(ZD958)的分割精度最高(mIoU=0.814)。表明U-Net模型对玉米雄穗分割具有较好的普适性与鲁棒性,为今后玉米表型试验中对雄穗的监测提供了一种有效的方法。

关键词: RGB影像深度学习特征提取层玉米雄穗分割    
Abstract:

This study focuses on the accuracy and stability of deep learning method for maize tassel segmentation at different tasseling stages and varieties. The RGB images were collected in the experimental base of Chinese Academy of Agricultural Sciences in Xinxiang City of Henan Province from July to September in 2019, and four models, PspNet, DeepLab V3+, SegNet and U-Net, based on the lightweight network as the feature extraction layer, were applied to compare the accuracy of different models for maize tassel segmentation. Then, the U-Net model with the best segmentation accuracy (mIoU=0.780) was selected to segment the maize tassel in different varieties at different tasseling stages. The results showed that the accuracy of U-Net model at different tasseling stages was generally better (mIoU=0.703 to 0.798), and the segmentation accuracy of maize tassel in fully emerged tassel stage was the highest (mIoU=0.798); the segmentation accuracy of maize tassel in different varieties was significantly different, but the average segmentation accuracy of maize tassel for all varieties was higher (mIoU=0.749), and the segmentation accuracy of Zhengdan 958 (ZD958) was the highest (mIoU=0.814). In summary, the U-Net model has good universality and robustness for maize tassel segmentation, which provides an effective method for tassel monitoring in maize phenotypic test in the future.

Key words: RGB image    deep learning    feature extraction layer    maize tassel    segmentation
收稿日期: 2021-03-12 出版日期: 2021-09-02
CLC:  TP 75  
基金资助: 国家自然科学基金面上项目(42071426);中国农业科学院基本科研业务费专项院级统筹项目(Y2020YJ07);中国农业科学院科技创新工程和基本科研业务费专项(ICS2020YJ01BX)
通讯作者: 景海涛,金秀良     E-mail: 211804020012@home.hpu.edu.cn;jht@hpu.edu.cn;jinxiuliang@caas.cn
作者简介: 余汛(https://orcid.org/0000-0002-1780-7711),E-mail:211804020012@home.hpu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
余汛
王哲
景海涛
金秀良
聂臣巍
白怡
王铮

引用本文:

余汛,王哲,景海涛,金秀良,聂臣巍,白怡,王铮. 基于深度学习方法和RGB影像的玉米雄穗分割[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 451-463.

Xun YU,Zhe WANG,Haitao JING,Xiuliang JIN,Chenwei NIE,Yi BAI,Zheng WANG. Maize tassel segmentation based on deep learning method and RGB image. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 451-463.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.03.121        http://www.zjujournals.com/agr/CN/Y2021/V47/I4/451

图1  地面图像采集场景及设备A.野外拍摄场景;B.索尼DSC-RX0M2数码相机;C.吊杆。

数据集

Dataset

模型

Model

特征提取层

Feature

extraction layer

分辨率

Resolution/

mm

影像大小

Image size

轮次

Epoch

学习率

Learning

rate

批量

大小

Batch

size

训练集数量

Number of

train set

验证集数量

Number of

validation

set

全生育时期1)

Whole tasseling stage1)

PspNetMobileNet0.564 800×3 200500.0012510219
DeepLab V3+MobileNet V20.564 800×3 200500.000 14510219
SegNetMobileNet0.564 800×3 200500.000 14510219
U-NetMobileNet0.564 800×3 200500.0012510219

完全抽雄期

Fully emerged tassel stage

U-NetMobileNet0.564 800×3 200500.0012416179

未完全抽雄期

Partially-tasseling stage

U-NetMobileNet0.564 800×3 200500.00129341
HT1U-NetMobileNet0.564 800×3 200500.00126331
FK139U-NetMobileNet0.564 800×3 200500.00126235
DK517U-NetMobileNet0.564 800×3 200500.00126818
JNK728U-NetMobileNet0.564 800×3 200500.00126126
XY335U-NetMobileNet0.564 800×3 200500.00124916
ZD958U-NetMobileNet0.564 800×3 200500.00127221
ZY8911U-NetMobileNet0.564 800×3 200500.00126427
DK653U-NetMobileNet0.564 800×3 200500.00125324
表1  本研究中使用的几个数据集的特征
图2  不同生育时期的影像划分示例A.未完全抽雄期的玉米雄穗图像;B.完全抽雄期的玉米雄穗图像。
图3  使用Labelme软件对玉米雄穗的标注示例
图4  SegNet模型的网络框架
图5  PspNet模型的网络框架
图6  DeepLab V3+模型的网络框架
图7  U-Net模型的网络框架

类型/步长

Type/stride

卷积核形状

Convolution kernel shape

输入大小

Input size

Conv/s23×3×3×32224×224×3
Conv dw/s13×3×32 dw112×112×32
Conv/s11×1×32×64112×112×32
Conv dw/s23×3×364 dw112×112×64
Conv/s11×1×64×12856×56×64
Conv dw/s13×3×128 dw56×56×128
Conv/s11×1×128×12856×56×128
Conv dw/s23×3×128 dw56×56×128
Conv/s11×1×128×12828×28×128
Conv dw/s13×3×128 dw28×28×256
Conv/s11×1×128×25628×28×256
Conv dw/s23×3×256 dw28×28×256
Conv/s11×1×256×51214×14×256
5×Conv dw/s13×3×512 dw14×14×512
5×Conv/s11×1×512×51214×14×512
Conv dw/s23×3×512 dw14×14×512
Conv/s11×1×512×1 0247×7×512
Conv dw/s23×3×1 024 dw7×7×1 024
Conv/s11×1×1 024×1 0247×7×1 024
Avg Pool/s1池化 Pooling 7×77×7×1 024
FC/s11 024×1 0001×1×1 024
Softmax/s1分类器 Classifier1×1×1 000
表2  MobileNet的网络结构
图8  残差网络结构

输入

Input

操作

Operator

tcns
2 242×3conv2d3212
1 122×32bottleneck11611
1 122×16bottleneck62422
562×24bottleneck63232
282×32bottleneck66442
282×64bottleneck69631
142×96bottleneck616032
72×160bottleneck632011
72×320conv2d 1×11 28011
72×1 280avgpool 7×71
1×1×kconv2d 1×1k
表3  MobileNet V2的网络结构

混淆矩阵

Confusion matrix

真实值 True value
正例 Positive负例 Negative

预测值

Predicted value

正例 Positive正确分类的正例 True positive (TP)错分成正例的负例 False positive (FP)
负例 Negative错分成负例的正例 False negative (FN)正确分类的负例 True negative (TN)
表4  混淆矩阵
图9  4种不同深度学习模型对全生育时期数据集中玉米雄穗的分割结果

模型

Model

分辨率

Resolution/

mm

影像大小

Image size

训练集/验证集

Train set or

validation

set

召回率

Recall

准确率

Precision

平均交并比

Mean

intersection

over union

每张影像中雄穗像元数精度

Accuracy of tassel pixel

number in each image

R2rRMSE
PspNet0.564 800×3 200训练集 Train set0.1560.4820.5490.530.708 8
0.564 800×3 200验证集 Validation set0.1280.4400.5370.510.755 3
DeepLab V3+0.564 800×3 200训练集Train set0.5360.6880.7040.830.221 3
0.564 800×3 200验证集 Validation set0.4980.6660.6880.790.250 9
SegNet0.564 800×3 200训练集 Train set0.3980.5870.6410.880.388 5
0.564 800×3 200验证集 Validation set0.3330.5150.5430.880.433 8
U-Net0.564 800×3 200训练集 Train set0.7030.7920.7920.850.323 5
0.564 800×3 200验证集 Validation set0.6760.7800.7800.840.332 3
表5  基于全生育时期数据集的各个模型精度评价
图10  以MobileNet为特征提取层的U-Net模型对不同生育时期数据集中玉米雄穗的分割精度A.全生育时期;B.完全抽雄期;C.未完全抽雄期。

生育时期

Growth stage

分辨率

Resolution/

mm

影像大小

Image size

训练集/验证集

Train set or

validation set

召回率

Recall

准确率

Precision

平均交并比

Mean

intersection

over union

每张影像中

雄穗像元数精度

Accuracy of tassel

pixel number in

each image

R2rRMSE

全生育时期

Whole tasseling stage

0.564 800×3 200训练集 Train set0.7030.8020.7920.850.323 5
0.564 800×3 200验证集 Validation set0.6760.7920.7800.840.332 3

完全抽雄期

Fully emerged tassel stage

0.564 800×3 200训练集 Train set0.7290.7940.7990.720.318 7
0.564 800×3 200验证集 Validation set0.7290.7930.7980.670.303 7

未完全抽雄期

Partially-tasseling stage

0.564 800×3 200训练集 Train set0.4680.8330.7100.880.210 6
0.564 800×3 200验证集 Validation set0.4600.8090.7030.940.252 6
表6  以MobileNet为特征提取层的U-Net模型对各生育时期数据集的分割精度评价
图11  以MobileNet为特征提取层的U-Net模型对不同品种数据集中玉米雄穗的分割精度

品种

Variety

分辨率

Resolution/

mm

影像大小

Image size

训练集/验证集

Train set or

validation set

召回率

Recall

准确率

Precision

平均交并比

Mean intersection

over union

每张影像中

雄穗像元数精度

Accuracy of tassel pixel number in each image

R2rRMSE
HT10.564 800×3 200训练集 Train set0.6260.8360.7680.870.165 8
0.564 800×3 200验证集 Validation set0.6100.8380.7600.770.183 2
FK1390.564 800×3 200训练集 Train set0.4800.8300.7100.860.207 1
0.564 800×3 200验证集 Validation set0.4390.8200.6910.700.236 9
DK5170.564 800×3 200训练集 Train set0.6410.7860.7600.960.409 4
0.564 800×3 200验证集 Validation set0.5840.7640.7340.980.426 0
JNK7280.564 800×3 200训练集 Train set0.5280.7900.7190.950.223 4
0.564 800×3 200验证集 Validation set0.5210.7740.7140.960.205 7
XY3350.564 800×3 200训练集 Train set0.5900.8350.7550.980.380 2
0.564 800×3 200验证集 Validation set0.5380.8380.7290.990.383 5
ZD9580.564 800×3 200训练集 Train set0.7190.8740.8190.870.225 5
0.564 800×3 200验证集 Validation set0.7180.8830.8140.770.243 1
ZY89110.564 800×3 200训练集 Train set0.6560.8130.8150.960.266 5
0.564 800×3 200验证集 Validation set0.6540.7820.7990.920.276 4
DK6530.564 800×3 200训练集 Train set0.5670.8030.7420.970.423 7
0.564 800×3 200验证集 Validation set0.5810.8860.7480.960.095 1
表7  以MobileNet为特征提取层的U-Net模型对各品种数据集的分割精度评价
1 JIN X L, ZARCO-TEJADA P, SCHMIDHALTER U, et al. High-throughput estimation of crop traits: a review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, 2021,9(1):200-231. DOI:10.1109/mgrs.2020.2998816
doi: 10
2 ARAUS J L, CAIRNS J E. Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Science, 2014,19(1):52-61. DOI:10.1016/j.tplants.2013.09.008
doi: 10.1016/j.tplants.2013.09.008
3 DEERY D, JIMENEZ-BERNI J, JONES H, et al. Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy, 2014,4(3):349-379. DOI:10.3390/agronomy4030349
doi: 10
4 LU H, CAO Z G, XIAO Y, et al. Region-based colour modelling for joint crop and maize tassel segmentation. Biosystems Engineering, 2016,147:139-150. DOI:10.1016/j.biosystemseng.2016.04.007
doi: 10.1016/j.biosystemseng.2016.04.007
5 HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks. Science, 2006,313(5786):504-507. DOI:10.1126/science.1127647
doi: 10.1126/science.1127647
6 LECUN Y, BENGIO Y, HINTON G. Deep learning. Nature, 2015,521(7553):436-444. DOI:10.1038/nature14539
doi: 10.1038/nature14539
7 MESNIL G, DAUPHIN Y, GLOROT X, et al. Unsupervised and transfer learning challenge: a deep learning approach//JMLR Workshop and Conference Proceedings. [S.
l.: s. n.], 2012:97-110.
8 DONAHUE J, JIA Y Q, VINYALS O, et al. DeCAF: a deep convolutional activation feature for generic visual recognition//Proceedings of the 31st International Conference on International Conference on Machine Learning. [S.
l.: s. n.], 2014:647-655.
9 RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf: an astounding baseline for recognition. New York, U. S.: IEEE, 2014. DOI:10.1109/CVPRW.2014.131
doi: 10.1109/CVPRW.2014.131
10 YOSINSKI J, CLUNE J, BENGIO Y, et al. How trans-ferable are features in deep neural networks?//Advances in Neural Information Processing Stystems. 2014:3320-3328[2021-03-10].
11 ZHANG M Y, JIANG Y, LI C Y, et al. Fully convolutional networks for blueberry bruising and calyx segmentation using hyperspectral transmittance imaging. Biosystems Engineering, 2020,192:159-175. DOI:10.1016/j.biosystemseng.2020.01.018
doi: 10.1016/j.biosystemseng.2020.01.018
12 NI X P, LI C Y, JIANG H Y, et al. Three-dimensional photogrammetry with deep learning instance segmentation to extract berry fruit harvestability traits. ISPRS Journal of Photogrammetry and Remote Sensing, 2021,171:297-309. DOI:10.1016/j.isprsjprs.2020.11.010
doi: 10.1016/j.isprsjprs.2020.11.010
13 GE Y Y, XIONG Y, TENORIO G L, et al. Fruit localization and environment perception for strawberry harvesting robots. IEEE Access, 2019(99):1-11. DOI:10.1109/ACCESS.2019.2946369
doi: 10.1109/ACCESS.2019.2946369
14 WU J T, YANG G J, YANG H, et al. Extracting apple tree crown information from remote imagery using deep learning. Computers and Electronics in Agriculture, 2020,174:105504. DOI:10.1016/j.compag.2020.105504
doi: 10.1016/j.compag.2020.105504
15 HUETHER P, SCHANDRY N, JANDRASITS K, et al. ARADEEPOPSIS, an automated workflow for top-view plant phenomics using semantic segmentation of leaf states. The Plant Cell, 2020,32(12):3674-3688. DOI:10.1105/tpc.20.00318
doi: 10.1105/tpc.20.00318
16 OH M H, OLSEN P, RAMAMURTHY K N. Counting and segmenting sorghum heads. [2021-03-10].
17 BADRINARAYANAN V, HANDA A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017,39(12):2481-2495. DOI:10.1109/TPAMI.2016.2644615
doi: 10.1109/TPAMI.2016.2644615
18 ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, U.
S.: IEEE, 2017:6230-6239. DOI:10.1109/CVPR.2017.660
doi: 10.1109/CVPR.2017.660
19 CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation//European Conference on Computer Vision (ECCV). Cham, Switzerland: Springer, 2018:833-851. DOI:10.1007/978-3-030-01234-2_49
doi: 10.1007/978-3-030-01234-2_49
20 RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation//International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI. Cham, Switzerland: Springer, 2015:234-241. DOI:10.1007/978-3-319-24574-4_28
doi: 10.1007/978-3-319-24574-4_28
21 HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications. [2021-03-10].
22 CHOLLET F. Xception: deep learning with depthwise separable convolutions//2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York, U.S.: IEEE, 2017. DOI:10.1109/CVPR.2017.195
doi: 10.1109/CVPR.2017.195
23 LU H, CAO Z G, XIAO Y, et al. Towards fine-grained maize tassel flowering status recognition: dataset, theory and practice. Applied Soft Computing, 2017,56:34-45. DOI:10.1016/j.asoc.2017.02.026
doi: 10.1016/j.asoc.2017.02.026
[1] 谢鹏尧,富昊伟,唐政,麻志宏,岑海燕. 基于RGB图像的冠层尺度水稻叶瘟病斑检测与抗性评估[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 415-428.
[2] 束美艳,魏家玺,周也莹,董奇宙,陈浩翀,黄智刚,马韫韬. 基于朴素贝叶斯分类的柑橘叶片溃疡病诊断[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 429-438.
[3] 王晓慧,周昆鹏. 自然环境中的红色番茄图像识别方法研究[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 395-403.
[4] 张万红. 基于图像法的离体小麦叶片几何参数计算[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 748-754.
[5] 张万红,刘文兆. 覆膜玉米冠层图像分割方法[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 649-656.
[6] 韩凝, 张秀英, 王小明, 王珂. 基于面向对象的IKONOS 影像香榧树分布信息提取研究[J]. 浙江大学学报(农业与生命科学版), 2009, 35(6): 670-676.
[7] 付峰  应义斌. 生物图像阈值分割方法的研究[J]. 浙江大学学报(农业与生命科学版), 2003, 29(1): 108-112.
[8] 应义斌. 水果图像的背景分割和边缘检测技术研究 [J]. 浙江大学学报(农业与生命科学版), 2000, 26(1): 35-38.