Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (4): 534-542    DOI: 10.3785/j.issn.1008-9209.2020.10.222
动物科学与动物医学     
不同品系豚鼠MHCⅠ类基因的多态性及差异表达
卫振1(),何珂2,洪胜辉1,刘迪文1()
1.浙江大学实验动物中心,杭州 310058
2.浙江农林大学动物科技学院和动物医学院,杭州 311300
Polymorphism and differential expression of MHCclassgenes between different strains of guinea pig
Zhen WEI1(),Ke HE2,Shenghui HONG1,Diwen LIU1()
1.Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
2.College of Animal Science and Technology/College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
 全文: PDF(3344 KB)   HTML
摘要:

由前期的研究可知,Zmu-1∶DHP远交系豚鼠对口蹄疫病毒的敏感性为100%,和其他DHP品系相比存在显著差异。本研究利用不同品系豚鼠(Zmu-1∶DHP远交系、Zmu-2∶DHP远交系和DHP品系),提取其脾脏RNA,转录为cDNA后进行聚合酶链式反应扩增,扩增产物经过高通量测序,分析豚鼠MHCⅠ类基因结构、单倍型及多态性信息,以检测各品系间该类基因的表达是否存在差异。结果表明:本研究系统地得到豚鼠的8条MHCⅠ类基因单倍型序列,其中部分单倍型在外显子3存在23个氨基酸缺失,但依旧存在一定程度的表达;部分品系间单倍型表达测序片段(reads)频率差异显著(P<0.05),推测MHCⅠ类基因单倍型表达差异可能和不同品系的免疫能力差异有关。本研究为豚鼠品系应用于疾病模型及疫苗开发奠定了理论基础。

关键词: 豚鼠Zmu品系MHCⅠ类基因    
Abstract:

Guinea pig is a laboratory animal model to study the illness and stimulation of infection. The previous studies showed that the sensitivity of Zmu-1∶DHP outbred guinea pig to foot-and-mouth disease virus was 100%, which was significantly different from DHP (parental strain). This study took three strains of guinea pigs (Zmu-1∶DHP outbred line, Zmu-2∶DHP outbred line and DHP strain) as the experimental groups. The RNA extracted from spleen of different strains of guinea pigs was transcribed into cDNA and amplified by polymerase chain reaction. The amplified products were sequenced by high-throughput sequencing to analyze the structure, haplotype and polymorphism of MHC classⅠgene in guinea pigs, so as to detect whether there were differences in the expression of MHC classⅠgene among different strains. The results showed that eight MHC classⅠsequences in guinea pig were found and some of these haplotypes had 23 amino acids deletion in exon 3. There were significant differences in the frequencies of haplotype expression reads among some strains (P<0.05), which suggested that the difference of MHCclassⅠhaplotype expression might be related to the difference of immune ability among different strains. The research provides a theoretical basis for the application of guinea pig strains in disease model and vaccine development.

Key words: guinea pig    Zmu strain    MHC classⅠgene
收稿日期: 2020-10-22 出版日期: 2021-08-25
CLC:  S 813  
基金资助: 卫生部科学研究基金(98-2-823)
通讯作者: 刘迪文     E-mail: lac@zju.edu.cn;liudiwen2004@163.com
作者简介: 卫振(https://orcid.org/0000-0001-8824-8411),E-mail:lac@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
卫振
何珂
洪胜辉
刘迪文

引用本文:

卫振,何珂,洪胜辉,刘迪文. 不同品系豚鼠MHCⅠ类基因的多态性及差异表达[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 534-542.

Zhen WEI,Ke HE,Shenghui HONG,Diwen LIU. Polymorphism and differential expression of MHCclassgenes between different strains of guinea pig. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 534-542.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.10.222        http://www.zjujournals.com/agr/CN/Y2021/V47/I4/534

图1  本研究所用的PCR引物示意图

单倍型

Haplotype

BWMB vs WB vs MW vs M
均值Mean

标准差

Standard deviation

均值

Mean

标准差

Standard deviation

均值

Mean

标准差

Standard deviation

Capo-ⅠA*010.0820.0060.0640.0150.0820.010**NS**
Capo-ⅠA*020.1400.0080.1390.0100.1370.005NSNSNS
Capo-ⅠA*030.0310.0060.0250.0060.0300.006*NSNS
Capo-ⅠA*040.1540.0150.1650.0140.1490.011NSNS**
Capo-ⅠA*050.0950.0130.1200.0180.0960.013**NS**
Capo-ⅠA*060.3690.0220.3700.0280.3850.006NS*NS
Capo-ⅠA*070.0830.0040.0740.0110.0800.007*NSNS
Capo-ⅠA*080.0450.0090.0430.0160.0400.008NSNSNS
表1  3个品系间MHCⅠ类基因单倍型频率分析及比较
图2  豚鼠MHCⅠ类基因单倍型多态性分析图中蓝色、红色和绿色区域分别表示α1、α2和Capo-ⅠA*06的缺失区域;“+”表示抗原结合域,参考序列为HLA(D38525.1)。
图3  单倍型Capo-ⅠA*01和Capo-ⅠA*06的蛋白质三维结构预测图图中红色表示部分单倍型中的缺失区域,粉色表示二硫键结合区域。
图4  豚鼠MHCⅠ类序列系统发育树带标记的进化支已被调整,不与图示进化距离一致。
图5  部分哺乳物种MHCⅠ类序列的系统发育树
1 张钊伟.豚鼠抗A型流感病毒感染的天然免疫应答机制研究.哈尔滨:东北农业大学,2012.
ZHANG Z W. Innate immune response mechanism of guinea pigs against influenza A virus infection. Harbin: Northeast Agricultural University, 2012. (in Chinese with English abstract)
2 赵俊.豚鼠模型评价牛口蹄疫Asia-1型灭活疫苗效力的研究.北京:中国农业科学院,2011.
ZHAO J. Establishment of guinea pigs potency model for inactivated bovine foot-and-mouth disease vaccine serotype Asia-1. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese with English abstract)
3 刘迪文.2个品系豚鼠对口蹄疫疫苗的免疫反应.中国兽医学报,2008,28(3):272-275. DOI:10.3724/SP.J.1011.2008.00534
LIU D W. Immune reaction of two guinea pig strains to FMD vaccine. Chinese Journal of Veterinary Science, 2008,28(3):272-275. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2008.00534
4 卫振,董新威,沈亮亮,等.Zmu-1∶DHP和DHP两个品系豚鼠组胺激发试验气道反应性的比较.中国比较医学杂志,2013,23(9):52-56. DOI:10.3969/j.issn.1671.7856.2013.009.011
WEI Z, DONG X W, SHEN L L, et al. Airway responsiveness of Zmu-1∶DHP and DHP guinea pigs following inhalation challenge with histamine. Chinese Journal Comparative Medicine, 2013,23(9):52-56. (in Chinese with English abstract)
doi: 10.3969/j.issn.1671.7856.2013.009.011
5 刘迪文,杨伟伟,吴宝金.豚鼠基因组26个多态性微卫星标记的筛选.中国实验动物学报,2014,22(3):78-83. DOI:10.3969/j.issn.1005-4847.2014.03.016
LIU D W, YANG W W, WU B J. 26 polymorphic microsatellite markers screened from the genome of guinea pigs. Acta Laboratorium Animalis Scientia Sinica, 2014,22(3):78-83. (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-4847.2014.03.016
6 KLEIN J. Natural History of the Major Histocompatibility Complex. New York, U. S.: John Wiley and Sons, 1986.
7 GECZY A F, WECK A L D, SCHWARTZ B D, et al. The major histocompatibility complex of the guinea pig Ⅰ serologic and genetic studies. The Journal of Immunology, 1976,115(6):1704-1710.
8 TAMURA K, PETERSON D, PETERSON N, et al. MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011,28(10):2731-2739. DOI:10.1093/molbev/msr121
doi: 10.1093/molbev/msr121
9 POND S L K, POSADA D, GRAVENOR M B, et al. GARD: a genetic algorithm for recombination detection. Bioinformatics, 2006,22(24):3096-3098. DOI:10.1093/bioinformatics/btl474
doi: 10.1093/bioin
10 TROWSDALE J, PARHAM P. Mini-review: defense strategies and immunity-related genes. European Journal of Immunology, 2010,34(1):7-17. DOI:10.1002/eji.200324693
doi: 10.1002/eji.200324693
11 KELLEY J, TROWSDALE J. Features of MHC and NK gene clusters. Transplant Immunology, 2005,14(3/4):129-134. DOI:10.1016/j.trim.2005.03.001
doi: 10.1016/j.trim.2005.03.001
12 MARSH S G E. Nomenclature for factors of the HLA system, update December 2016. Human Immunology, 2017,78(3):316-321. DOI:10.1016/j.humimm.2017.01.009
doi: 10.1016/j.humimm.2017.01.009
13 GILLINGHAM M A F, COURTIOL A, TEIXEIRA M, et al. Evidence of gene orthology and trans-species polymorphism, but not of parallel evolution, despite high levels of concerted evolution in the major histocompatibility complex of flamingo species. Journal of Evolutionary Biology, 2016,29(2):438-454. DOI:10.1111/jeb.12798
doi: 10.1111/jeb.12798
14 CHAMBERS J E, JESSOP C E, BULLEID N J. Formation of a major histocompatibility complex class Ⅰ tapasin disulfide indicates a change in spatial organization of the peptide-loading complex during assembly. Journal of Biological Chemistry, 2008,283(4):1862-1869. DOI:10.1074/jbc.M708196200
doi: 10.1074/jbc.M708196200
15 李倬,陈朗,姜涛,等.牦牛DQA2基因单核苷酸多态性及其生物信息学分析,浙江大学学报(农业与生命科学版),2020,46(3):376-382. DOI:10.3785/j.issn.1008-9209.2019.06.211
LI Z, CHEN L, JIANG T, et al. Single nucleotide polymorphism and bioinformatics analysis of DQA2 gene in yak. Journal of Zhejiang University (Agriculture and Life Sciences), 2020,46(3):376-382. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2019.06.211
16 LILLIE M, CUI J, SHINE R, et al. Molecular characterization of MHC class Ⅱ in the Australian invasive cane toad reveals multiple splice variants. Immunogenetics, 2016,68(6/7):449-460. DOI:10.1007/s00251-016-0919-9
doi: 10.1007/s00251-016-0919-9
17 ZHANG X H, DAI Z X, ZHANG G H, et al. Molecular characterization, balancing selection, and genomic organization of the tree shrew (Tupaia belangeri) MHC class Ⅰ gene. Gene, 2013,522:147-155. DOI:10.1016/j.gene.2013.03.113
doi: 10.1016/j.gene.2013.03.113
18 ZHU R, CHEN Z Y, WANG J, et al. Extensive diversification of MHC in Chinese giant salamanders Andrias davidianus (Anda-MHC) reveals novel splice variants. Developmental and Comparative Immunology, 2014,42:311-322. DOI:10.1016/j.dci.2013.10.001
doi: 10.1016/j.dci.2013.10.001
19 GOODRIDGE J P, BURIAN A, LEE N, et al. HLA-F and MHC class Ⅰ open conformers are ligands for NK cell Ig-like receptors. Journal of Immunology, 2013,191(7):3553-3562. DOI:10.4049/jimmunol.1300081
doi: 10.4049/jimmunol.1300081
20 ACEVEDO-SáENZ L, CARMONA-PéREZ L, VELILLA-HERNáNDEZ P A, et al. The APPEESFRS peptide, restricted by the HLA-B*35∶01 molecule, and the APPEESFRF variant derived from an autologous HIV-1 strain induces polyfunctional responses in CD8+ T cells. Bioresearch Open Access, 2015,4(1):115-120. DOI:10.1089/biores.2014.0054
doi: 10.1089/biores.2014.0054
21 DEMANET C, MULDER A, DENEYS V, et al. Down-regulation of HLA-A and HLA-Bw6, but not HLA-Bw4, allospecificities in leukemic cells: an escape mechanism from CTL and NK attack?Blood, 2004,103(8):3122-3130. DOI:10.1182/blood-2003-07-2500
doi: 10.1182/blood-2003-07-2500
22 KIM T, HUNT H D, PARCELLS M S, et al. Two class Ⅰ genes of the chicken MHC have different functions: BF1 is recognized by NK cells while BF2 is recognized by CTLs. Immunogenetics, 2018,70:599-611. DOI:10.1007/s00251-018-1069-z
doi: 10.1007/s00251-018-1069-z
23 王文君,陆森,吴士超,等.定量PCR检测HLA-C等位基因表达方法的建立和初步应用.中国免疫学杂志,2016,32(8):1165-1170. DOI:10.3969/j.issn.1000-484X.2016.08.018
WANG W J, LU S, WU S C, et al. A novel real-time quantitative PCR method for analyzing HLA-C allele expression level. Chinese Journal of Immunlogy, 2016,32(8):1165-1170. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-484X.2016.08.018
[1] 徐海圣  黄立峰  王淑霞. 中华绒螯蟹豚鼠气单胞菌的分离和鉴定[J]. 浙江大学学报(农业与生命科学版), 2001, 27(6): 677-681.
[2] 孙红祥 舒妙安. 中华鳖溶血性腹水病病原菌的分离鉴定及药敏性研究[J]. 浙江大学学报(农业与生命科学版), 2000, 26(2): 177-180.