Please wait a minute...
浙江大学学报(农业与生命科学版)  2021, Vol. 47 Issue (2): 193-202    DOI: 10.3785/j.issn.1008-9209.2020.06.101
食品科学     
微流控芯片恒温扩增技术快速检测米饭中的蜡样芽孢杆菌
王珍1(),贺磊2,肖英平3,卢先东2,刘艳红2,陆雯1,王首锋4()
1.绿城农科检测技术有限公司,杭州 310052
2.宁波爱基因科技有限公司,浙江 宁波 315000
3.浙江省农业科学院,杭州 310021
4.浙江大学医学院基础医学系,杭州 310058
Rapid detection of Bacillus cereus in rice by isothermal amplification with microfluidic chip method
Zhen WANG1(),Lei HE2,Yingping XIAO3,Xiandong LU2,Yanhong LIU2,Wen LU1,Shoufeng WANG4()
1.Greentown Agricultural Testing Technology Co. , Ltd. , Hangzhou 310052, China
2.Ningbo iGene Technology Co. , Ltd. , Ningbo 315000, Zhejiang, China
3.Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
4.Department of Basic Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China
 全文: PDF(3496 KB)   HTML
摘要:

为建立米饭中的蜡样芽孢杆菌微流控芯片恒温扩增快速检测方法,利用蜡样芽孢杆菌公开的hblA基因序列设计引物,加入荧光染料SYTO-9,采用微流控芯片通过环介导恒温扩增进行实时荧光读数,并通过24株菌株验证其特异性;分别用阳性质粒和阳性菌株测试其灵敏度、检出限和重复性。结果表明:2株蜡样芽孢杆菌呈阳性,22株非蜡样芽孢杆菌呈阴性;微流控芯片恒温扩增技术检测蜡样芽孢杆菌菌液的灵敏度为170 CFU/mL,检测时间在35 min内;使用合成的蜡样芽孢杆菌阳性质粒样品,其灵敏度为10 μL-1,检测时间在15 min内,比传统分离鉴定方法的灵敏度高10倍;人工污染米饭中蜡样芽孢杆菌的检出限为570 CFU/g,并可在45 min内完成结果判定;蜡样芽孢杆菌阳性质粒检测重复性好,其变异系数(coefficient of variation, CV)为2.02%。综上所述,微流控芯片恒温扩增快速检测方法特异性好、灵敏度高、结果准确,可用于米饭类食品中蜡样芽孢杆菌的快速检测。

关键词: 微流控芯片环介导恒温扩增蜡样芽孢杆菌米饭检测    
Abstract:

Rapid detection of Bacillus cereus in rice by loop-mediated isothermal amplification (LAMP) with microfluidic chip method was established. Based on the published B. cereus hblA gene sequence, primers were designed, and the fluorescent dye SYTO-9 was added to the reaction system, which allowed to be tested in real-time fluorescence reading performed by LAMP with microfluidic chip. The specificity was verified by 24 strains, and the sensitivity, limit of detection (LOD) and repeatability were tested by positive plasmid and positive strain of B. cereus, respectively. The results showed that two strains of B. cereus were positive and 22 strains of non-B. cereus were negative. The sensitivity for B. cereus was 170 CFU/mL for pure cultures in 35 min and 10 μL-1 for positive plasmids in 15 min. The sensitivity of this method was 10 times higher than that of the traditional method. The LOD for B. cereus inartificially contaminated rice was 570 CFU/g, and could be completed in 45 min. The detecting repeatability of the positive plasmid from B. cereus was good and its coefficient of variation (CV ) was 2.02%. It is indicated that LAMP with microfluidic chip method has high specificity, sensitivity and accuracy. It could be used for rapid detection of B. cereus in rice.

Key words: microfluidic chip    loop-mediated isothermal amplification (LAMP)    Bacillus cereus    rice    detection
收稿日期: 2020-06-10 出版日期: 2021-04-25
CLC:  Q 78  
基金资助: 国家重点研发计划(2018YFC1603400)
通讯作者: 王首锋     E-mail: 705878750@ qq.com;sfwang@zju.edu.cn
作者简介: 王珍(https://orcid.org/0000-0001-6002-4272),E-mail:705878750@ qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王珍
贺磊
肖英平
卢先东
刘艳红
陆雯
王首锋

引用本文:

王珍,贺磊,肖英平,卢先东,刘艳红,陆雯,王首锋. 微流控芯片恒温扩增技术快速检测米饭中的蜡样芽孢杆菌[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 193-202.

Zhen WANG,Lei HE,Yingping XIAO,Xiandong LU,Yanhong LIU,Wen LU,Shoufeng WANG. Rapid detection of Bacillus cereus in rice by isothermal amplification with microfluidic chip method. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 193-202.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2020.06.101        http://www.zjujournals.com/agr/CN/Y2021/V47/I2/193

序号

No.

菌株名称

Strain name

菌株编号

Strain number

1蜡样芽孢杆菌 Bacillus cereusCMCC (B) 63301
2蜡样芽孢杆菌 Bacillus cereusLCLY 001
3苏云金芽孢杆菌 Bacillus thuringiensisATCC 10792
4蕈状芽孢杆菌 Bacillus mycoidesATCC 10206
5枯草芽孢杆菌 Bacillus subtilisCMCC (B) 63501
6

肺炎克雷伯氏菌

Klebsiella peneumoniae

ATCC 4352
7大肠埃希菌 Escherichia coliATCC 25922
8

肠出血性大肠埃希菌O157∶H7

Enterohemorrhagic Escherichia

coli (EHEC) O157∶H7

CICC 21530
9

鼠伤寒沙门菌

Salmonella typhimurium

CMCC (B) 50115
10阪崎肠杆菌 Enterobacter sakazakiiATCC 29544
11

副溶血性弧菌

Vibrio parahaemolyticus

ATCC 17802
12马红球菌 Rhodococcus equiATCC 6939
13

金黄色葡萄球菌

Staphylococcus aureus

ATCC 6538
14

表皮葡萄球菌

Staphylococcus epidermidis

CMCC (B) 26069
15粪肠球菌 Enterococcus faecalisATCC 29212
16

单核细胞增生李斯特氏菌

Listeria monocytogenes

ATCC 19115
17伊氏李斯特氏菌 Listeria ivanoviiATCC 19119
18福氏志贺氏菌 Shigella flexneriCMCC (B) 51572
19

乙型溶血性链球菌

β-hemolytic Streptococcus

CMCC (B) 32210
20

铜绿假单胞菌

Pseudomonas aeruginosa

ATCC 27853
21短小芽孢杆菌 Bacillus pumilusCMCC (B) 63202
22地衣芽孢杆菌 Bacillus licheniformisCMCC (B) 63519
23

解淀粉芽孢杆菌

Bacillus amyloliquefaciens

ATCC 23845
24巨大芽孢杆菌 Bacillus megatheriumATCC 35985
表1  实验用菌株

目标基因

Target gene

引物名称

Primer name

序列(5′→3′)

Sequence (5′→3′)

hblAF3F: AGCAAGGGATAATTTAGGTAAG
B3R: TCAATATGCCCTAGAACGC
FIPF: AACTCCAACTACACGATTTAAGGTTCCTTTATTAGCAGAATTACGTCAG
BIPR: GAAATGCACAAGGCGCTTGAAGAATCTAAATCATGCCACTG
表2  引物序列
图1  LAMP反应温度优化结果
图2  蜡样芽孢杆菌微流控芯片LAMP特异性测试结果图A中,1:蜡样芽孢杆菌[CMCC(B) 63301];2:苏云金芽孢杆菌(ATCC 10792);3:蕈状芽孢杆菌(ATCC 10206);4:枯草芽孢杆菌[CMCC (B) 63501];5:肺炎克雷伯氏菌(ATCC 4352);6:大肠埃希菌(ATCC 25922);7:肠出血性大肠埃希菌O157∶H7(CICC 21530);8:阴性对照。图B中,1:蜡样芽孢杆菌[CMCC(B) 63301];2:鼠伤寒沙门菌[CMCC(B) 50115];3:阪崎肠杆菌(ATCC 29544);4:马红球菌(ATCC 6939);5:副溶血性弧菌(ATCC 17802);6:金黄色葡萄球菌(ATCC 6538);7:表皮葡萄球菌[CMCC(B) 26069];8:阴性对照。图C中,1:蜡样芽孢杆菌(LCLY 001);2:粪肠球菌(ATCC 29212);3:单核细胞增生李斯特氏菌(ATCC 19115);4:伊氏李斯特氏菌(ATCC 19119);5:铜绿假单胞菌(ATCC 27853);6:福氏志贺氏菌[CMCC(B) 51572];7:乙型溶血性链球菌[CMCC (B) 32210];8:阴性对照。图D中,1:蜡样芽孢杆菌[CMCC(B) 63301];2:短小芽孢杆菌[CMCC(B) 63202];3:地衣芽孢杆菌[CMCC(B) 63519];4:解淀粉芽孢杆菌(ATCC 23845);5:巨大芽孢杆菌(ATCC 35985);6~8:阴性对照。
图3  蜡样芽孢杆菌实际样品微流控芯片LAMP反应灵敏度检测结果1~5:分别为1.7×105、1.7×104、1.7×103、1.7×102、1.7×101 CFU/mL的培养物;6:阴性对照。
图4  阳性质粒pUC57-hblA微流控芯片LAMP反应灵敏度检测结果1:阴性对照;2~8:分别为1×100、1×101、1×102、1×103、1×104、1×105、1×106 μL-1的质粒样品。
图5  阳性质粒pUC57-hblA微流控芯片LAMP的重复性检测结果1~8:1×104 μL-1的质粒重复检测8次的结果。

检测次数

Number of detection

CT
112.473 73
212.771 98
312.566 29
412.826 23
513.053 71
613.118 82
712.529 07
813.165 19
平均值 Average12.813 13
标准差 Standard deviation0.258 348
CV/%2.016 274
表3  微流控芯片LAMP检测蜡样芽孢杆菌的变异系数分析
图6  微流控芯片LAMP检测人工污染米饭中蜡样芽孢杆菌的检出限1~7:菌液浓度分别为5.7×106、5.7×105、5.7×104、5.7×103、5.7×102、5.7×101、5.7×100 CFU/mL的米饭样品;8:阴性对照。
图7  微流控芯片
1 施春雷.食源性致病微生物研究的新动态.食品安全质量检测学报,2019,10(18):5981-5982. DOI:10.19812/j.cnki.jfsq11-5956/ts.2019.18.001
SHI C L. Research trends on foodborne pathogens. Journal of Food Safety and Quality, 2019,10(18):5981-5982. (in Chinese)
doi: 10.19812/j.cnki.jfsq11-5956/ts.2019.18.001
2 毛雪丹,胡俊峰,刘秀梅.2003—2007年中国106 0起细菌性食源性疾病流行病学特征分析.中国食品卫生杂志,2010,22(3):224-228.
MAO X D, HU J F, LIU X M. Epidemiological characteristics of bacterial foodborne disease during the year 2003—2007 in China. Chinese Journal of Food Hygiene, 2010,22(3):224-228. (in Chinese with English abstract)
3 陆湘华,崔昌,王远萍,等.蜡样芽孢杆菌食物中毒的研究进展.传染病信息,2015,28(4):251-254. DOI:10.3969/j.issn.1007-8134.2015.04.017
LU X H, CUI C, WANG Y P, et al. Research progress of Bacillus cereus foodborne diseases. Infectious Disease Infor-mation, 2015,28(4):251-254. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-8134.2015.04.017
4 中华人民共和国卫生部.食品微生物学检验 蜡样芽孢杆菌检验:GB4789.14—2014.北京:中国标准出版社,2014.
Ministry of Health of the People’s Republic of China. Microbiological Examination of Food Hygiene: Examination of Bacillus cereus: GB4789.14—2014. Beijing:China Standard Press, 2014. (in Chinese)
5 王振国,刘金华,徐宝梁,等.应用实时荧光PCR检测致病性蜡样芽孢杆菌.生物技术通讯,2006,17(1):40-42.
WANG Z G, LIU J H, XU B L, et al. Development of a SYBR Green Ⅰ real-time PCR assay for detection of morbific Bacillus cereus strains. Letters in Biotechnology, 2006,17(1):40-42. (in Chinese with English abstract)
6 黄晶菁,罗静,何宏轩,等.蜡样芽孢杆菌检测方法研究进展.中国畜牧兽医,2018,45(3):635-642. DOI:10.16431/j.cnki.1671-7236.2018.03.010
HUANG J J, LUO J, HE H X, et al. Research progress on detection methods for Bacillus cereus. China Animal Husbandry and Veterinary Medicine, 2018,45(3):635-642. (in Chinese with English abstract)
doi: 10.16431/j.cnki.1671-7236.2018.03.010
7 邓雪蕾,张苑怡,袁浩钧,等.液滴数字聚合酶链式反应芯片及其在致病菌检测中的应用.分析测试学报,2017,36(10):1191-1196. DOI:10.3969/j.issn.1004-4957.2017.10.004
DENG X L, ZHANG Y Y, YUAN H J, et al. Fabrication of a droplet digital PCR chip and its application in pathogenic bacteria detection. Journal of Instrumental Analysis, 2017,36(10):1191-1196. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-4957.2017.10.004
8 CHELLIAH R, WEI S, PARK B J, et al. Novel motB as a potential predictive tool for identification of B. cereus, B.thuringiensis and differentiation from other Bacillus species by triplex real-time PCR. Microbial Pathogenesis, 2017,111:22-27. DOI:10.1016/j.micpath.2017.07.050
doi: 10.1016/j.micpath.2017.07.050
9 PORCELLATO D, NARVHUS J, SKEIE S B. Detection and quantification of Bacillus cereus group in milk by droplet digital PCR. Journal of Microbiological Methods, 2016,127:1-6. DOI:10.1016/j.mimet.2016.05.012
doi: 10.1016/j.mimet.2016.05.012
10 贾雅菁,付博宇,王羽,等.实时荧光环介导等温扩增技术检测牛乳中的蜡样芽孢杆菌.食品科学,2016,37(6):184-189. DOI:10.7506/spkx1002-6630-201606033
JIA Y J, FU B Y, WANG Y, et al. Detection of Bacillus cereus in milk by real-time fluorescence loop-mediated isothermal amplification method. Food Science, 2016,37(6):184-189. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-201606033
11 徐淑菲,孔繁德,苗丽,等.LAMP技术研究进展及其在动物疫病检测中的应用.中国动物检疫,2017,34(1):75-80. DOI:10.3969/j.issn.1005-944X.2017.01.022
XU S F, KONG F D, MIAO L, et al. Research progress of LAMP technology and its application in animal diseases detection. China Journal of Animal Quarantine, 2017,34(1):75-80. (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-944X.2017.01.022
12 王振国,刘和平,刘金华,等.应用PCR方法检测蜡样芽孢杆菌的研究.吉林农业大学学报,2006,28(6):671-673.
WANG Z G, LIU H P, LIU J H, et al. Identification of Bacillus cereus by gyrase B gene with PCR method. Journal of Jilin Agricultural University, 2006,28(6):671-673. (in Chinese with English abstract)
13 郑光辉,马瑞敏,李方强,等.微流控芯片技术在神经外科术后细菌感染快速诊断中的应用.临床检验杂志,2019,37(4):246-250. DOI:10.13602/j.cnki.jcls.2019.04.02
ZHENG G H, MA R M, LI F Q, et al. Application of a microfluidic chip platform in rapid diagnosis of post-neurosurgical bacterial infection. Chinese Journal of Clinical Laboratory Science, 2019,37(4):246-250. (in Chinese with English abstract)
doi: 10.13602/j.cnki.jcls.2019.04.02
14 GIUFFRIDA M C, SPOTO G. Integration of isothermal amplification methods in microfluidic devices: recent advances. Biosensors and Bioelectronics, 2016,90:174-186. DOI:10.1016/j.bios.2016.11.045
doi: 10.1016/j.bios.2016.11.045
15 何祥鹏,邹秉杰,齐谢敏,等.基于核酸等温扩增的病原微生物微流控检测技术.遗传,2019,41(7):611-624. DOI:10.16288/j.yczz.19-051
HE X P, ZOU B J, QI X M, et al. Methods of isothermal nucleic acid amplification-based microfluidic chips for pathogen microorganism detection. Hereditas (Beijing), 2019,41(7):611-624. (in Chinese with English abstract)
doi: 10.16288/j.yczz.19-051
16 M?NTYNEN V, LINDSTR?M K. A rapid PCR-based DNA test for enterotoxic Bacillus cereus. Applied and Environmental Microbiology, 1998,64(5):1634-1639.
17 马新秀,胡文忠,冯可,等.生物芯片在微生物检测中的应用.食品与发酵工业,2018,44(2):273-277. DOI:10.13995/j.cnki.11-1802/ts.015826
MA X X, HU W Z, FENG K, et al. Applications of biochip in microbiological detection. Food and Fermentation Industries,2018,44(2):273-277. (in Chinese with English abstract)
doi: 10.13995/j.cnki.11-1802/ts.015826
18 周新丽,申炳阳,高丽娟,等.用于五种动物源性成分快速检测的离心式微流控芯片系统研制.食品与发酵工业,2020,46(3):229-234. DOI:10.13995/j.cnki.11-1802/ts.021457
ZHOU X L, SHEN B Y, GAO L J, et al. Development of centrifugal microfluidic chip system for rapid detection of five animal-derived components. Food and Fermentation Industries, 2020,46(3):229-234. (in Chinese with English abstract)
doi: 10.13995/j.cnki.11-1802/ts.021457
19 黄火清,郁昂.环介导等温扩增技术的研究进展.生物技术,2012,22(3):90-94. DOI:10.3969/j.issn.1004-311X.2012.03.76
HUANG H Q, YU A. Advances of loop-mediated isothermal amplification. Biotechnology, 2012,22(3):90-94. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-311X.2012.03.76
20 李玉锋,李帅,黄丽娟,等.LAMP技术在食品致病菌检测中的研究进展.西华大学学报,2011,30(1):16-l8. DOI:10.3969/j.issn.1673-159X.2011.01.005
LI Y F, LI S, HUANG L J, et al. Advance of the research on testing of pathogenic microbe in food by LAMP technology. Journal of Xihua University, 2011,30(1):16-l8. (in Chinese with English abstract)
doi: 10.3969/j.issn.1673-159X.2011.01.005
21 ELZBIETA O W, PIOTR W. PCR detection of cytK gene in Bacillus cereus group strains isolated from food samples. Journal of Microbiological Methods, 2013,95:295-301. DOI:10.1016/j.mimet.2013.09.012
doi: 10.1016/j.mimet.2013.09.012
22 杨健,侯婷婷,佐兆杭,等.牛乳中蜡样芽孢杆菌荧光定量PCR检测方法的建立及验证.中国生物制品学杂志,2019(3):324-327, 332. DOI:10.13200/j.cnki.cjb.002520
YANG J, HOU T T, ZUO Z H, et al. Establishment and verification of fluorescence quantitative PCR assay for Bacillus cereus in milk. Chinese Journal of Bilogicals, 2019(3):324-327, 332. (in Chinese with English abstract)
doi: 10.13200/j.cnki.cjb.002520
23 MARTíNEZ-BLANCH J F, SáNCHEZ G, GARAY E, et al. Development of a real-time PCR assay for detection and quantification of enterotoxigenic members of Bacillus cereus group in food samples. International Journal of Food Microbiology, 2009,135(1):15-21. DOI:10.1016/j.ijfoodmicro.2009.07.013
doi: 10.1016/j.ijfoodmicro.2009.07.013
24 闻子钰,梁昊,顾一心,等.细菌核酸提取方法对荧光定量PCR检测差异分析.中国病原生物学杂志,2019(6):621-624. DOI:10.13350/j.cjpb.190601
WEN Z Y, LIANG H, GU Y X, et al. Comparison of methods of DNA extraction for real time PCR analysis. Journal of Pathogen Biology, 2019(6):621-624. (in Chinese with English abstract)
doi: 10.13350/j.cjpb.190601
25 陈秀琴,黄梅清,郑敏,等.食源性致病菌快速检测技术及其应用研究进展.福建农业学报,2018,33(4):438-446. DOI:10.19303/j.issn.1008-0384.2018.04.019
CHEN X Q, HUANG M Q, ZHENG M, et al. Advances on rapid detection of foodborne pathogens and the application. Fujian Journal of Agricultural Sciences, 2018,33(4):438-446. (in Chinese with English abstract)
doi: 10.19303/j.issn.1008-0384.2018.04.019
26 WEHRLE E, DIDIER A, MORAVEK M, et al. Detection of Bacillus cereus with enteropathogenic potential by multiplex real-time PCR based on SYBR green Ⅰ. Molecular and Cellular Probes, 2010,24:124-130. DOI:10.1016/j.mcp.2009.11.004
doi: 10.1016/j.mcp.2009.11.004
27 MONIS P T, GIGLIO S, SAINT C P. Comparison of SYTO9 and SYBR Green Ⅰ for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Analytical Biochemistry, 2005,340(1):24-34. DOI:10.1016/j.ab.2005.01.046
doi: 10.1016/j.ab.2005.01.046
28 王倩,闫雯,沈明辉.荧光染料SYTO13用于高分辨熔解曲线技术SNP基因分型的评价.中华检验医学杂志,2017,40(2):88-94. DOI:10.3760/cma.j.issn.1009-9158.2017.02.004
WANG Q, YAN W, SHEN M H, et al. Evaluation of SYTO13 as fluorescent dye for high resolution melting based single nucleotide polymorphism genotyping. Chinese Journal of Laboratory Medicine, 2017,40(2):88-94. (in Chinese with English abstract)
doi: 10.3760/cma.j.issn.1009-9158.2017.02.004
29 刘芳,罗臻,黄静敏,等.致病性蜡样芽孢杆菌的研究进展.检验检疫学刊,2016,26(1):68-71.
LIU F,LUO Z,HUANG J M, et al. Research progress of pathogenic Bacillus Cereus. Journal of Inspection and Quarantine, 2016,26(1):68-71. (in Chinese with English abstract)
[1] 陈婧,何宏燕,刘昌胜. 微流芯片表面生物改性用于重组人骨形态发生蛋白-2的检测[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 391-399.
[2] 史宗勇,陈子言,祁琛,王成,赵梦晓,李夏莹,王文斌,袁建琴,许冬梅,乔永刚,刘建东,张秀杰,高建华. 一种用于鉴定18种转基因大豆转化体的多靶标质粒的构建与应用[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 280-290.
[3] 虞惠贞,侯寒黎,尹文秀,张荃,孙超,张明哲,张晓峰,苗丽,吴姗. 利用TaqMan微流控阵列同步检测多种动物源性成分[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 189-200.
[4] 魏雨晴,王毓宁,李绍佳,孙崇德,吴迪. 基于自制便携式近红外光谱仪的枇杷果实可溶性固形物无损检测及年度重复验证[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 119-125.
[5] 王冉冉,刘鑫,尹孟,翟德昂,刘双喜,王金星. 面向苹果硬度检测仪的声振信号激励与采集系统设计[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 111-118.
[6] 刘妍,周新奇,俞晓峰,李永强,韩双来. 无损检测技术在果蔬品质检测中的应用研究进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 27-37.
[7] 桂江生,吴子娴,李凯. 基于卷积神经网络模型的大豆花叶病初期高光谱检测[J]. 浙江大学学报(农业与生命科学版), 2019, 45(2): 256-262.
[8] 王丽丽,杨军国,林清霞,项丽慧,宋振硕,张应根,陈林. 高效液相色谱-二极管阵列检测器法测定茶叶中10种有机酸含量[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 47-53.
[9] 张萌,李光辉. 基于RELIEF算法和极限学习机的苹果轻微损伤高光谱检测方法[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 126-134.
[10] 卢焕达, 于欣, 刘广强. 基于图像处理和压缩感知的鱼群低溶氧胁迫异常行为检测方法[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 499-506.
[11] 何勇, 吴剑坚, 方慧, 郑启帅, 肖舒裴, 岑海燕. 植保无人机雾滴沉积效果研究综述[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 392-398.
[12] 董楸煌, 程千晟, 邱荣斌, 叶大鹏. 基于红外检测的原木自动化锯切翻转机锯切策略及锯切角度分析[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 459-464.
[13] 张贵,张园园,田永伟,赵晓军,张光,周洪友,景岚,赵君. 向日葵黄萎病种子带菌研究[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 41-48.
[14] 王丽丽, 国巍, 付春娜, 燕红. 可降解苯酚的产电芽孢杆菌WL027的分离筛选及其产电机制初探[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 654-664.
[15] 杨春平, 李钊君, 宁红, 陈华保, 龚国淑, 杨继芝, 张敏. HPLC检测枇杷中氯吡脲含量的前处理方法[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 350-357.