Please wait a minute...
浙江大学学报(农业与生命科学版)  2019, Vol. 45 Issue (3): 306-316    DOI: 10.3785/j.issn.1008-9209.2018.11.121
植物保护     
多组学技术揭示葡萄叶片响应灰葡萄孢菌侵染的抗性机制
方献平(),和雅妮,奚晓军,查倩,张丽勍,蒋爱丽()
上海市农业科学院林木果树研究所, 上海 201403
Multi-omics reveals the resistance mechanism of grape leaves in response to Botrytis cinerea
Xianping FANG(),Yani HE,Xiaojun XI,Qian ZHA,Liqing ZHANG,Aili JIANG()
Institute of Forestry and Pomology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
 全文: PDF(2992 KB)   HTML
摘要:

以葡萄灰霉病高抗品种‘申丰’叶片为试验材料,采用基于液相色谱质谱联用的非标记定量蛋白质组学和非靶向定量代谢组学技术,比较了叶片在灰葡萄孢菌侵染胁迫3 d后体内蛋白质和代谢物的差异变化水平。试验结果表明,葡萄叶片中有1 374个蛋白质和33种小分子代谢物在病菌侵染后发生了1.5倍以上的差异表达(P<0.05)。功能注释和代谢通路富集等生物信息学分析发现,灰葡萄孢菌侵染对叶绿体蛋白表达影响最大,且主要集中在植病互作、植物激素与生物碱合成3条信号路径上。基于多组学数据的联合分析进一步表明,水杨酸合成与信号转导通路中的分支酸、水杨酸、异分支酸丙酮酸裂解酶pchB、转录因子TGA和病程相关蛋白PR-1表达水平显著上调。水杨酸介导的抗病信号通路的全面激活是葡萄叶片抵御灰葡萄孢菌侵染的有效手段。本研究发现为后续深入揭示葡萄灰霉病菌互作分子机制及葡萄抗病新品种选育奠定了理论研究基础。

关键词: 葡萄灰葡萄孢菌蛋白质组学代谢组水杨酸    
Abstract:

Liquid chromatography and mass spectrometry based label-free proteomics and non-target metabolomics technology were used to study the proteome and metabolome change of disease-resistant grape cultivar ‘Shenfeng’ infected with Botrytis cinerea. There were 1 374 proteins and 33 metabolites showing more than 1.5-fold changes in ‘Shenfeng’ leaves infected with B.cinerea, respectively. The differentially expressed proteins and metabolites were analyzed by gene ontology annotation and bioinformatics. The results showed that B. cinerea infection changed the expression level of chloroplast proteins, and mainly focused on plant and pathogen interaction, synthesis pathways of plant hormones and alkaloids. Multi-omics analysis further showed that there was a consistent increase in the expression levels of chorismic acid, salicylic acid, isochorismic pyruvate lyase pchB, transcription factor TGA and pathogenesis-related protein PR-1 in the salicylic acid-mediated disease-resistant signal transduction pathway. The full activation of salicylic acid-mediated disease resistance signaling pathway is an effective means for grape leaves to resist B. cinerea infection. The result is of great benefit to further deeply reveal the molecular mechanisms of plant-pathogen interactions and the breeding of pathogen-resistant grape varieties.

Key words: grape    Botrytis cinerea    proteomics    metabolomics    salicylic acid
收稿日期: 2018-11-12 出版日期: 2019-06-25
CLC:  S 663.1  
基金资助: 国家葡萄产业技术体系项目(CARS-29-10)
通讯作者: 蒋爱丽     E-mail: fxpbio@163.com;putaojal@163.com
作者简介: 方献平(https://orcid.org/0000-0001-7461-9170),E-mail:fxpbio@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
方献平
和雅妮
奚晓军
查倩
张丽勍
蒋爱丽

引用本文:

方献平,和雅妮,奚晓军,查倩,张丽勍,蒋爱丽. 多组学技术揭示葡萄叶片响应灰葡萄孢菌侵染的抗性机制[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 306-316.

Xianping FANG,Yani HE,Xiaojun XI,Qian ZHA,Liqing ZHANG,Aili JIANG. Multi-omics reveals the resistance mechanism of grape leaves in response to Botrytis cinerea. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 306-316.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2018.11.121        http://www.zjujournals.com/agr/CN/Y2019/V45/I3/306

图1  模拟和真实接种灰葡萄孢菌3 d后‘申丰’‘巨峰’葡萄叶片的病症变化
图2  葡萄叶片病菌处理前后的差异蛋白质组鉴定

基因名

Gene name

蛋白质信息

Protein description

序列覆盖率

Sequence

coverage/%

分子质量

Molecular

mass/kDa

比值(接菌组/模拟组)

Ratio (pathogen-infected/mock-infected)

P

P value

VIT_08s0007g03490

酰基载体蛋白

Acyl carrier protein

26.2 14.800 0.16±0.02 0.011 3
VIT_14s0068g01280

V型ATP酶亚基C

V-type proton ATPase subunit C

27.4 42.700 0.17±0.02 0.011 5
VIT_12s0035g01140

Ras相关蛋白

Ras-related protein

57.3 23.900 0.22±0.03 0.007 7
VIT_08s0040g01910

V型ATP酶亚基G

V-type proton ATPase subunit G

71.0 12.200 0.24±0.01 0.008 1
VIT_06s0004g05210

转录起始因子ⅡA亚基1

Transcription initiation factor ⅡA subunit 1

9.7 43.000 0.25±0.01 0.000 5
VIT_17s0053g01010

果糖-1,6-二磷酸醛缩酶

Fructose-1, 6-bisphosphate aldolase

19.9 34.300 0.26±0.02 0.007 2
VIT_06s0061g00810

细胞周期蛋白依赖激酶

Cyclin-dependent kinases

53.4 10.607 0.26±0.03 0.001 1
VIT_07s0191g00090

14-3-3样蛋白

14-3-3-like protein

67.5 28.781 0.26±0.03 0.002 4
VIT_18s0001g10520

脂质转移蛋白

Lipid-transfer protein

50.8 13.599 0.26±0.02 0.021 4
VIT_00s0317g00050

脱氢抗坏血酸还原酶

Dehydroascorbate reductase

78.3 23.689 0.29±0.01 0.004 9
VIT_06s0004g05920

增殖细胞核抗原

Proliferating cell nuclear antigen

69.8 29.600 0.32±0.02 0.000 6
VIT_13s0147g00100

复制蛋白A

Replication protein A

17.1 18.200 0.32±0.03 0.001 9
VIT_19s0014g01570

UBP1相关蛋白2C

UBP1-associated protein 2C

40.8 45.420 0.32±0.01 0.003 3
VIT_08s0040g00470

钙调素-7亚型X1

Calmodulin-7 isoform X1

71.5 16.800 0.33±0.08 0.009 7
VIT_02s0025g01300

枯草杆菌蛋白酶SBT 2.5

Subtilisin-like protease SBT 2.5

28.4 10.765 3.03±0.35 0.013 8
VIT_05s0020g03180

光系统Ⅰ反应中心亚单位Ⅱ

Photosystem Ⅰ reaction center subunit Ⅱ

59.8 22.481 3.11±0.21 0.003 8
VIT_14s0060g00820

茎环结合蛋白

Stem-loop binding protein

45.2 42.330 3.12±0.22 0.004 9
VIT_14s0066g02380

蛋白质转运蛋白SEC13同系物B

Protein transport protein SEC13 homolog B

58.1 32.720 3.12±0.33 0.005 7
VIT_14s0006g01400

钙结合蛋白CML23

Calcium-binding protein CML23

31.7 16.500 3.13±0.26 0.006 5
VIT_17s0000g02480

钙结合过敏原Ole8

Calcium-binding allergen Ole8

80.6 10.400 3.27±0.28 0.006 5
VIT_03s0097g00700

病程相关蛋白1

Pathogenesis-related protein 1

24.0 17.600 3.33±0.24 0.004 4
VIT_05s0077g00810

钙调蛋白4

Calmodulin-4

25.4 21.200 3.35±0.32 0.009 9
VIT_03s0088g00680

病程相关蛋白B1-2

Pathogenesis-related protein B1-2

20.0 17.900 3.76±0.12 0.000 2
VIT_18s0001g14500

内质同系物

Endoplasmin homolog

52.8 93.200 3.86±0.29 0.004 2
VIT_17s0000g00580

钙调蛋白

Calmodulin

71.5 16.900 3.89±0.19 0.000 8
VIT_15s0046g02110

晚期冗余蛋白

Late abundant protein

47.7 16.567 4.08±0.12 0.000 8
VIT_14s0030g02220

转位蛋白TATA

Translocase protein TATA

38.5 14.700 4.13±0.36 0.013 6
VIT_02s0025g02140

管腔结合蛋白5

Luminal-binding protein 5

66.8 73.600 4.16±0.25 0.002 5
VIT_16s0098g01580

管腔结合蛋白亚型X2

Luminal-binding protein 5 isoform X2

63.8 73.500 4.52±0.11 0.000 1
VIT_19s0090g01570

40S核糖体蛋白S8

40S ribosomal protein S8

37.5 24.800 4.56±0.36 0.024 4
VIT_08s0007g03620

60S酸性核糖体蛋白P2

60S acidic ribosomal protein P2

79.1 11.500 4.87±0.34 0.003 2
VIT_08s0091g00240

异分支酸合成酶

Isochorismate pyruvate lyase

34.1 13.700 5.12±0.41 0.002 6
VIT_06s0061g00770

50S 核糖体蛋白L9

50S ribosomal protein L9

41.5 22.200 7.13±0.35 0.001 1
表1  葡萄叶片差异表达3.0倍以上的蛋白质定量信息
图3  差异表达蛋白质的GO功能归类分析
图4  差异表达蛋白质的GO功能(A)和KEGG代谢通路富集(B)分析

代谢物

Metabolites

质荷比

m/z

保留时间 Retention time/min

离子模式

Ion mode

比值

Ratio

L-脲基丙氨酸

L-Oxalylalbizziine

202.0 3.41 阴性 0.15±0.01

3-乙酰氧基-2-羟丙基十八酸盐

3-(Acetyloxy)-2-hydroxypropyl octadecenoate

423.3 12.11 阴性 0.36±0.01

色氨酸

Tryptophane

200.0 3.41 阴性 0.36±0.01

N1-反式阿魏拉美汀

N1-trans-feruloylagmatine

289.2 6.41 阴性 0.46±0.00

3-乙酰氧基-2-羟丙基二十烷酸盐

3-(Acetyloxy)-2-hydroxypropyl icosanoate

451.3 13.23 阴性 0.48±0.01

C19-鞘氨醇-1-磷酸

C19-Sphingosine-1-phosphate

376.3 6.14 阴性 0.50±0.02

3-(2,3-二羟基-3-甲基丁基)-4-羟基苯甲酸甲酯

3-(2,3-dihydroxy-3-methylbutyl)-4-hydroxybenzoat

277.1 0.95 阴性 0.50±0.02

3-己二酸

3-Hexenedioic acid

143.0 7.93 阳性 0.50±0.01

2-(1-乙氧基乙氧基)丙酸

2-(1-Ethoxyethoxy)propanoic acid

347.2 3.87 阴性 0.51±0.01

邻苯二甲酸

Phthalic acid

149.0 8.22 阴性 0.51±0.01

八乙二醇

Octaethylene glycol

388.3 3.63 阴性 0.52±0.02

扎波汀

Zapotinin

329.1 7.35 阴性 0.53±0.00

苦杏仁碱H

Acrimarine H

536.2 16.07 阴性 0.54±0.05

三氟乙酸

Trifluoroacetic acid

113.0 17.11 阳性 0.55±0.01

2-苯基丁酸

2-Phenylbutyric acid

147.1 0.19 阴性 0.55±0.02

氧化芳樟醇D 3-[己糖基-(1->6)-葡萄糖苷]

Linalool oxide D 3-[apiosyl-(1->6)-glucoside]

509.2 6.97 阳性 0.55±0.00

二十烷酰乙醚

Eicosanoyl-EA

338.3 12.70 阴性 0.58±0.05

肾上腺素

Epinephrine

166.1 2.02 阴性 0.59±0.05

12S-羟基-16-十七烷酸

12S-Hydroxy-16-heptadecynoic acid

327.2 4.68 阳性 1.54±0.09
MGDG[20∶5(5Z,8Z,11Z,14Z,17Z)/16∶3(7Z,10Z,13Z)] 815.5 16.84 阳性 1.64±0.21
DG[14∶0/18∶3(6Z,9Z,12Z)/0∶0] 585.5 12.63 阴性 1.67±0.15
MGDG[18∶3(9Z,12Z,15Z)/16∶3(7Z,10Z,13Z)] 769.5 12.63 阴性 1.67±0.09

13-氧肟

13-OxoODE

293.2 7.07 阳性 1.69±0.18
MGDG[18∶3(9Z,12Z,15Z)/18∶3(9Z,12Z,15Z)] 797.5 13.48 阴性 1.74±0.14

13S-羟基十八二烯酸

13S-Hydroxyoctadecadienoic acid

341.2 5.32 阳性 1.85±0.12

2-正戊基呋喃

2-Pentylfuran

277.2 7.08 阴性 1.94±0.09
PI[13∶0/18∶2(9Z,12Z)] 837.5 14.88 阳性 2.01±0.14

氧分子

Oxygen

82.0 0.79 阴性 2.02±0.15

鸟嘌呤

Guanine

152.1 1.23 阴性 2.04±0.19

鳄梨碱

Avocadyne

329.2 4.90 阳性 2.06±0.15

分支酸

Chorismic acid

226.0 8.32 阴性 2.92±0.13

E)-2-辛烯醛

(E)-2-octenal

109.1 6.97 阴性 3.82±0.21

水杨酸

Salicylic acid

138.0 10.65 阳性 3.84±0.24
表2  33种变化1.5倍以上的差异代谢物
图5  差异代谢物参与的KEGG代谢通路富集分析
图6  差异蛋白质与代谢物共同参与的水杨酸抗病信号通路
1 MLIKOTA G F , SMILANICK J L . Postharvest control of table grape gray mold on detached berries with carbonate and bicarbonate salts and disinfectants. American Journal of Enology Viticulture, 2001,52(1):12-20.
2 WILLIAMSON B , TUDZYNSKI B , TUDZYNSKI P , et al . Botrytis cinerea: the cause of grey mould disease. Molecuar Plant Pathology, 2007,8(5):561-580.
3 陈宇飞,文景芝,李立军 .葡萄灰霉病研究进展.东北农业大学学报,2006,37(5):693-699.
CHEN Y F , WEN J Z , LI L J . Research progress of grape grey mildew. Journal of Northeast Agricultural University, 2006,37(5):693-699. (in Chinese with English abstract)
4 FANG X P , CHEN J P , DAI L Y , et al . Proteomic dissection of plant responses to various pathogens. Proteomics, 2015,15(9):1525-1543.
5 MUKHERJEE A K , CARP M J , ZUCHMAN R , et al . Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola . Journal of Proteomics, 2010,73(4):709-720.
6 YAO Y A , WANG J , MA X, et al . Proteomic analysis of Mn-induced resistance to powdery mildew in grapevine. Journal of Experimental Botany, 2012,63(14):5155-5170.
7 FIEHN O . Metabolomics: the link between genotypes and phenotypes. Plant Molecular Biology, 2002,48:155-171.
8 BATOVSKA D I , TODOROVA I T , NEDELCHEVA D V , et al . Preliminary study on biomarkers for the fungal resistance in Vitis vinifera leaves. Journal of Plant Physiology, 2008,165(8):791-795.
9 VON S V, ZHANG W , KANAWATI B , et al . The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. The Plant Cell, 2011,23(11):4124-4145.
10 WINTER D , SEIDLER J , ZIV-LEHRMAN S , et al . Simultaneous identification and quantification of proteins by differential 16O/18O labeling and UPLC-MS/MS applied to mouse cerebellar phosphoproteome following irradiation. Anticancer Research, 2009,29(12):4949-4958.
11 NIEHL A , ZHANG Z J , KUIPER M , et al . Label-free quantitative proteomic analysis of systemic responses to local wounding and virus infection in Arabidopsis thaliana . Journal of Proteome Research, 2013,12(6):2491-2503.
12 CAMARIES G , SCALSCHI L , VICEDO B , et al . An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas syringae . The Plant Journal, 2015,84(1):125-139.
13 SADE D , SHRIKI O , CUADROS-INOSTROZA A , et al . Comparative metabolomics and transcriptomics of plant response to tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics, 2015,11(1):81-97.
14 HAO L , WANG J X , PAGE D , et al . Comparative evaluation of MS-based metabolomics software and its application to preclinical Alzheimer’s disease. Scientific Reports, 2018,8(1):9291-9300.
15 DURSO G , PIZZA C , PIACENTE S , et al . Combination of LC-MS based metabolomics and antioxidant activity for evaluation of bioactive compounds in Fragaria vesca leaves from Italy. Journal of Pharmaceutical and Biomedical Analysis, 2018,150:233-240.
16 MAHESH H B , SUBBA P , ADVANI J , et al . Multi-omics driven assembly and annotation of the sandalwood (Santalum album) genome. Plant Physiology, 2018,176:2772-2788.
17 BLANCO-MIGUEZ A , FDEZ-RIVEROLA F , SANCHEZ B , et al . Resources and tools for the high-throughput, multi-omic study of intestinal microbiota. Briefings in Bioinformatics, 2017,18(6):156-157.
18 LEI R , JIANG H S , HU F , et al . Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection. Plant Cell Reports, 2017,36(2):327-341.
19 LIU J , YANG J , BI H P , et al . Why mosaic? Gene expression profiling of African cassava mosaic virus-infected cassava reveals the effect of chlorophyll degradation on symptom development. Journal of Integrative Plant Biology, 2014,56(2):122-132.
20 CLEMENTE-MORENO M J , DIAZ-VIVANCOS P , RUBIO M , et al . Chloroplast protection in plum pox virus-infected peach plants by L-2-oxo-4-thiazolidine-carboxylic acid treatments: effect in the proteome. Plant Cell Environment, 2013,36(3):640-654.
21 RAGHVENDRA A S . Photosynthesis: a Aomprehensive Treatise. London, UK: Cambridge University Press, 1998:72-86.
22 SARRY J E , KUHN L , DUCRUIX C , et al . The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics, 2006,6(7):2180-2198.
23 NAKABAYASHI R , SAITO K . Integrated metabolomics for abiotic stress responses in plants. Current Opinion in Plant Biology, 2015,24:10-16.
24 FEUSSNER I , POLLE A . What the transcriptome does not tell: proteomics and metabolomics are closer to the plants’ patho-phenotype. Current Opinion in Plant Biology, 2015,26:26-31.
25 BEDNAREK P , OSBOURN A . Plant-microbe interactions: chemical diversity in plant defense. Science, 2009,324:746-748.
26 HUFFAKER A , KAPLAN F , VAUGHAN M M , et al . Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiology, 2011,156:2082-2097.
27 WILDERMUTH M C , DEWDNEY J , WU G , et al . Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 2001,414(6863):562-565.
[1] 高晓月,董彬,张超,付建新,胡绍庆,赵宏波,梁立军. 桂花扩展蛋白基因OfEXPA2OfEXPA4OfEXLA1启动子克隆及活性分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 23-29.
[2] 苗慧莹, 陈浩, 常嘉琪, 王梦雨, 张芬, 孙勃, 汪俏梅. 葡萄糖和茉莉酸甲酯对芥蓝芽菜芥子油苷积累及其抗氧化特性的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 327-334.
[3] 梁思源, 王越珉, 胡松华. 头孢噻呋纳米乳的制备及其抗奶牛乳腺炎主要致病菌的研究[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 247-252.
[4] 王伟科,袁卫东,方献平,宋吉玲,闫静,陆娜. 秀珍菇不同生长发育阶段蛋白质组学分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 527-535.
[5] 庞钰洁, 李海燕, 竺啸恒, 高福明, 殷益明, 贾惠娟. “三本提”葡萄芽变“11-06-25”的遗传鉴定[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 73-80.
[6] 张丽平, 卢晓明, 陆玫丹, 王莉, 李坤峰, 沈林章, 贾惠娟. “亚历山大”葡萄疏果省力化关键技术[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 327-332.
[7] 蒋明,刘青娥,章燕如,祝琦,龚秀,俞可可,周秀倩. 青花菜C3H型锌指蛋白基因BoCCCH2的克隆与表达[J]. 浙江大学学报(农业与生命科学版), 2016, 42(2): 143-149.
[8] 李海燕,张丽平,王莉,殷益明,贾惠娟. 2种植物生长调节剂对阳光玫瑰葡萄品质的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(04): 419-426.
[9] 方献平, 朱丽敏, 刘凯, 阮松林, 许宝青, 谢楠, 蔡丽娟, 刘新轶, 戴瑜来, 冯晓宇, 李忠全. 定量蛋白组学揭示三角鲂和团头鲂响应嗜水气单胞菌侵染机制变化[J]. 浙江大学学报(农业与生命科学版), 2015, 41(5): 602-615.
[10] 吕晓菡, 方献平, 柴伟国, 马俊平, 周毅飞. 辣椒胞质不育系与保持系花药的细胞学和蛋白质组学差异分析[J]. 浙江大学学报(农业与生命科学版), 2015, 41(1): 44-55.
[11] 杨夏1, 何水平2, 陆玫丹1, 裴庆松3, 贾惠娟1*. 基质限根栽培对“亚历山大”葡萄生长和果实品质的影响[J]. 浙江大学学报(农业与生命科学版), 2014, 40(5): 519-525.
[12] 陆玫丹1, 贺坤2, 裴庆松3, 贾惠娟1*. 不同水平负载量对“鄞红”葡萄成熟和品质的影响[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 175-180.
[13] 李倩延, 卢向锋, 张鹏程, 孙玲艳, 刘于, 马晓航*. 氧化葡萄糖酸杆菌DHA3-9的葡萄糖代谢酶系[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 133-140.
[14] 周国艳, 胡望雄, 徐建红*, 薛庆中*. 整合多个组学(omics)分析植物代谢产物及其功能[J]. 浙江大学学报(农业与生命科学版), 2013, 39(3): 237-245.
[15] 李春英1*, 杨彦1, 李赫2, 李兰1, 励建荣3*. 辣椒叶提取物对α葡萄糖苷酶的抑制活性[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2): 173-177.