Please wait a minute...
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)  2012, Vol. 13 Issue (7): 567-578    DOI: 10.1631/jzus.B1100343
Articles     
Response to weaning and dietary L-glutamine supplementation: metabolomic analysis in piglets by gas chromatography/mass spectrometry
Ying-ping Xiao, Tian-xing Wu, Qi-hua Hong, Jiang-ming Sun, An-guo Chen, Cai-mei Yang, Xiao-yan Li
College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China; Department of Chemistry, Tongji University, Shanghai 200092, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  A novel metabolomic method based on gas chromatography/mass spectrometry (GC-MS) was applied to determine the metabolites in the serum of piglets in response to weaning and dietary L-glutamine (Gln) supplementation. Thirty-six 21-d-old piglets were randomly assigned into three groups. One group continued to suckle from the sows (suckling group), whereas the other two groups were weaned and their diets were supplemented with 1% (w/w) Gln or isonitrogenous L-alanine, respectively, representing Gln group or control group. Serum samples were collected to characterize metabolites after a 7-d treatment. Results showed that twenty metabolites were down-regulated significantly (P<0.05) in control piglets compared with suckling ones. These data demonstrated that early weaning causes a wide range of metabolic changes across arginine and proline metabolism, aminosugar and nucleotide metabolism, galactose metabolism, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acid, and fatty acid metabolism. Dietary Gln supplementation increased the levels of creatinine, D-xylose, 2-hydroxybutyric acid, palmitelaidic acid, and α-L-galactofuranose (P<0.05) in early weaned piglets, and were involved in the arginine and proline metabolism, carbohydrate metabolism, and fatty acid metabolism. A leave-one-out cross-validation of random forest analysis indicated that creatinine was the most important metabolite among the three groups. Notably, the concentration of creatinine in control piglets was decreased (P=0.00001) compared to the suckling piglets, and increased (P=0.0003) in Gln-supplemented piglets. A correlation network for weaned and suckling piglets revealed that early weaning changed the metabolic pathways, leading to the abnormality of carbohydrate metabolism, amino acid metabolism, and lipid metabolism, which could be partially improved by dietary Gln supplementation. These findings provide fresh insight into the complex metabolic changes in response to early weaning and dietary Gln supplementation in piglets.

Key wordsPiglet      Metabolomics      Weaning      Glutamine      Gas chromatography/mass spectrometry     
Received: 08 November 2011      Published: 05 July 2012
CLC:  S811.3  
Cite this article:

Ying-ping Xiao, Tian-xing Wu, Qi-hua Hong, Jiang-ming Sun, An-guo Chen, Cai-mei Yang, Xiao-yan Li. Response to weaning and dietary L-glutamine supplementation: metabolomic analysis in piglets by gas chromatography/mass spectrometry. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2012, 13(7): 567-578.

URL:

http://www.zjujournals.com/xueshu/zjus-b/10.1631/jzus.B1100343     OR     http://www.zjujournals.com/xueshu/zjus-b/Y2012/V13/I7/567

[1] Lin Huang, Xian-yong Ma, Zong-yong Jiang, You-jun Hu, Chun-tian Zheng, Xue-fen Yang, Li Wang, Kai-guo Gao. Effects of soybean isoflavone on intestinal antioxidant capacity and cytokines in young piglets fed oxidized fish oil[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2016, 17(12): 965-974.
[2] Huan-sheng Yang, Fei Wu, Li-na Long, Tie-jun Li, Xia Xiong, Peng Liao, Hong-nan Liu, Yu-long Yin. Effects of yeast products on the intestinal morphology, barrier function, cytokine expression, and antioxidant system of weaned piglets[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2016, 17(10): 752-762.
[3] Zhi-mei Tian, Xian-yong Ma, Xue-fen Yang, Qiu-li Fan, Yun-xia Xiong, Yue-qin Qiu, Li Wang, Xiao-lu Wen, Zong-yong Jiang. Influence of low protein diets on gene expression of digestive enzymes and hormone secretion in the gastrointestinal tract of young weaned piglets[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2016, 17(10): 742-751.
[4] Sheng-ping Wang, Yun-ling Gao, Gang Liu, Dun Deng, Rong-jun Chen, Yu-zhe Zhang, Li-li Li, Qing-qi Wen, Yong-qing Hou, Ze-meng Feng, Zhao-hui Guo. Molecular cloning, characterization and expression of the energy homeostasis-associated gene in piglet[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2015, 16(6): 524-532.
[5] Cun-xi Nie,Wen-ju Zhang,Yan-feng Liu,Wen-xia Ge,Jian-cheng Liu. Tissue lipid metabolism and hepatic metabolomic profiling in response to supplementation of fermented cottonseed meal in the diets of broiler chickens[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2015, 16(6): 447-455.
[6] Ming-ming Chen, Ai-li Li, Mao-cheng Sun, Zhen Feng, Xiang-chen Meng, Ying Wang. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 333-342.