Please wait a minute...
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)  2010, Vol. 11 Issue (5): 332-341    DOI: 10.1631/jzus.B0900310
Biotechnology     
Analysis of genetic diversity in banana cultivars (Musa cvs.) from the South of Oman using AFLP markers and classification by phylogenetic, hierarchical clustering and principal component analyses
Umezuruike Linus Opara, Dan Jacobson, Nadiya Abubakar Al-Saady
Department of Horticultural Science, Faculty of AgricSciences, University of Stellenbosch, Stellenbosch 7602, South Africa, Department of Viticulture and Oenology, Institute of Wine Biotechnology, Faculty of AgricSciences, University of Stellenbosch, Stellenbosch 7602, South Africa, Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Sultanate of Oman
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Banana is an important crop grown in Oman and there is a dearth of information on its genetic diversity to assist in crop breeding and improvement programs. This study employed amplified fragment length polymorphism (AFLP) to investigate the genetic variation in local banana cultivars from the southern region of Oman. Using 12 primer combinations, a total of 1094 bands were scored, of which 1012 were polymorphic. Eighty-two unique markers were identified, which revealed the distinct separation of the seven cultivars. The results obtained show that AFLP can be used to differentiate the banana cultivars. Further classification by phylogenetic, hierarchical clustering and principal component analyses showed significant differences between the clusters found with molecular markers and those clusters created by previous studies using morphological analysis. Based on the analytical results, a consensus dendrogram of the banana cultivars is presented.

Key wordsMusa      Genetic diversity      Amplified fragment length polymorphism (AFLP)      Phylogenetics      Principal component analysis (PCA)      Hierarchical clustering analysis (HCA)      Oman     
Received: 08 October 2009      Published: 28 April 2010
CLC:  S66  
Cite this article:

Umezuruike Linus Opara, Dan Jacobson, Nadiya Abubakar Al-Saady. Analysis of genetic diversity in banana cultivars (Musa cvs.) from the South of Oman using AFLP markers and classification by phylogenetic, hierarchical clustering and principal component analyses. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2010, 11(5): 332-341.

URL:

http://www.zjujournals.com/xueshu/zjus-b/10.1631/jzus.B0900310     OR     http://www.zjujournals.com/xueshu/zjus-b/Y2010/V11/I5/332

[1] Xiao-yan Yue, Guo-qin Liu, Yu Zong, Yuan-wen Teng, Dan-ying Cai. Development of genic SSR markers from transcriptome sequencing of pear buds[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 303-312.
[2] Hui-min Jia, Yu-tong Shen, Yun Jiao, Guo-yun Wang, Xiao Dong, Hui-juan Jia, Fang Du, Sen-miao Liang, Chao-chao Zhou, Wei-hua Mao, Zhong-shan Gao. Development of 107 SSR markers from whole genome shotgun sequences of Chinese bayberry (Myrica rubra) and their application in seedling identification[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(11): 997-1005.
[3] Xiu-ping Lu, Bing-guang Xiao, Yong-ping Li, Yi-jie Gui, Yu Wang, Long-jiang Fan. Diversity arrays technology (DArT) for studying the genetic polymorphism of flue-cured tobacco (Nicotiana tabacum)[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(7): 570-577.
[4] Gu-wen Zhang, Sheng-chun Xu, Wei-hua Mao, Qi-zan Hu, Ya-ming Gong. Determination of the genetic diversity of vegetable soybean [Glycine max (L.) Merr.] using EST-SSR markers[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(4): 279-288.
[5] Jing-ze Zhang, Pei-gang Guan, Gang Tao, Mohammad Reza Ojaghian, Kevin David Hyde. Ultrastructure and phylogeny of Ustilago coicis[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(4): 336-345.
[6] Jun-mei Wang, Jian-ming Yang, Jing-huan Zhu, Qiao-jun Jia, Yue-zhi Tao. Assessment of genetic diversity by simple sequence repeat markers among forty elite varieties in the germplasm for malting barley breeding[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2010, 11(10): 792-800.
[7] Zhan-yu LIU, Jing-jing SHI, Li-wen ZHANG, Jing-feng HUANG. Discrimination of rice panicles by hyperspectral reflectance data based on principal component analysis and support vector classification[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2010, 11(1): 71-78.
[8] Long LI, Hui RUAN, Liu-liu MA, Wei WANG, Ping ZHOU, Guo-qing HE. Study on swelling model and thermodynamic structure of native konjac glucomannan[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2009, 10(4): 273-279.
[9] Hui-rong XU, Peng YU, Xia-ping FU, Yi-bin YING. On-site variety discrimination of tomato plant using visible-near infrared reflectance spectroscopy[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2009, 10(2): 126-132.
[10] Jian-ping LI, Hai-jian ZHOU, Lin YUAN, Ting HE, Song-hua HU. Prevalence, genetic diversity, and antimicrobial susceptibility profiles of Staphylococcus aureus isolated from bovine mastitis in Zhejiang Province, China[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2009, 10(10): 753-760.
[11] Wang Qiang, Ruan Xiao, Huang Jun-Hua, Xu Ning-Yi, Yan Qi-Chuan. Intra-specific genetic relationship analyses of Elaeagnus angustifolia based on RP-HPLC biochemical markers[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2006, 7(4 ): 4-.
[12] WANG Qiang, RUAN Xiao, JIN Zhi-hua, YAN Qi-chuan, TU Shanjun. Identification of Rhodiola species by using RP-HPLC*[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2005, 6( 6): 6-.
[13] JIANG Ping-ping, LANG Qiu-lei, FANG Sheng-guo, DING Ping, CHEN Li-ming. A genetic diversity comparison between captive individuals and wild individuals of Elliot?ˉs Pheasant (Syrmaticus ellioti) using mitochondrial DNA*[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2005, 6( 5): 19-.