Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2016, Vol. 17 Issue (1): 37-44    DOI: 10.1631/jzus.A1500213
    
Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod
Chun-li Zhang1,3,4,Xiao-yuan Wang1,Wei-qiu Chen1,3,4,Jia-shi Yang1,2,†()
1 Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
2 Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, USA
3 Soft Matter Research Center, Zhejiang University, Hangzhou 310027, China
4 Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Hangzhou 310027, China
Download: HTML     PDF(750KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

We made a theoretical study of the carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod of crystals of class 6 mm. Simple analytical expressions for the carrier distribution, electric potential, electric field, electric displacement, mechanical displacement, stress, and strain were obtained from a 1D nonlinear model reduced from the 3D equations for piezoelectric semiconductors. The distribution and fields were found to be either symmetric or antisymmetric about the center of the rod. They are qualitatively the same for electrons and holes. Numerical calculations show that the carrier distribution and the fields are relatively strong near the ends of the rod than in its central part. They are sensitive to the value of the carrier density near the ends of the rod.



Key wordsPiezoelectricity      Semiconductor      Rod      Carrier distribution     
Received: 27 July 2015      Published: 06 January 2016
Fund:  National Natural Science Foundation of China(No. 11202182, 11272281, 11321202)
Corresponding Authors: Jia-shi Yang     E-mail: jyang1@unl.edu
Cite this article:

Chun-li Zhang,Xiao-yuan Wang,Wei-qiu Chen,Jia-shi Yang. Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 37-44.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1500213     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2016/V17/I1/37

Fig. 1 A piezoelectric semiconductor rod of crystals of class 6 mm
Fig. 2 Roots of Eq. (31): n0=1012 m−3, Y=±0.603X; n0= 1014 m−3, Y=±0.0603X
Fig. 3 Carrier distribution along the rod
Fig. 4 Axial distributions of the electric field E3 (a), electric potential φ (b), and electric displacement D3 (c)
Fig. 5 Axial strain (a) and axial displacement (b)
[1]   Auld BA , Acoustic Fields and Waves in Solids. 1973, New York: John Wiley and Sons, 357-382
[2]   Büyükköse S , Hernández-Mínguez A , Vratzov B et al. High-frequency acoustic charge transport in GaAs nanowires. Nanotechnology. 2014, 25(13): 135204 doi: 10.1088/0957-4484/25/13/135204
doi: 10.1088/0957-4484/25/13/135204
[3]   de Lorenzi HG , Tiersten HF On the interaction of the electromagnetic field with heat conducting deformable semiconductors. Journal of Mathematical Physics. 1975, 16(4): 938-957 doi: 10.1063/1.522600
doi: 10.1063/1.522600
[4]   Ghosh SK , Acoustic wave amplification in ion-implanted piezoelectric semiconductor. Indian Journal of Pure and Applied Physics. 2006, 44(2): 183-187
[5]   Graton O , Poulin-Vittrant G , Hue LTH et al. A strategy of modelling and simulation of electromechanical conversion in ZnO nanowires. Advances in Applied Ceramics. 2013, 112(2): 85-90 doi: 10.1179/1743676112Y.0000000029
doi: 10.1179/1743676112Y.0000000029
[6]   Hiralal P , Unalan HE , Amaratunga GA Nanowires for energy generation. Nanotechnology. 2012, 23(19): 194002 doi: 10.1088/0957-4484/23/19/194002
doi: 10.1088/0957-4484/23/19/194002
[7]   Hu YT , Zeng Y , Yang JS A mode III crack in a piezoelectric semiconductor of crystals with 6mm symmetry. International Journal of Solids and Structures. 2007, 44(11-12): 3928-3938 doi: 10.1016/j.ijsolstr.2006.10.033
doi: 10.1016/j.ijsolstr.2006.10.033
[8]   Hutson AR , White DL , Elastic wave propagation in piezoelectric semiconductors. Journal of Applied Physics. 1962, 33(1): 40-47 doi: 10.1063/1.1728525
doi: 10.1063/1.1728525
[9]   Kumar B , Kim SW , Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy. 2012, 1(3): 342-355 doi: 10.1016/j.nanoen.2012.02.001
doi: 10.1016/j.nanoen.2012.02.001
[10]   Lee PCY , Liu NH , Ballato A , Thickness vibrations of a piezoelectric plate with dissipation. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2004, 51(1): 52-62 doi: 10.1109/TUFFC.2004.1268467
doi: 10.1109/TUFFC.2004.1268467
[11]   Li P , Jin F , Yang JS , Effects of semiconduction on electromechanical energy conversion in piezoelectrics. Smart Materials and Structures. 2015, 24(2): 025021 doi: 10.1088/0964-1726/24/2/025021
doi: 10.1088/0964-1726/24/2/025021
[12]   Maugin G , Daher N , Phenomenological theory of elastic semiconductors. International Journal of Engineering Science. 1986, 24(5): 703-731 doi: 10.1016/0020-7225(86)90106-0
doi: 10.1016/0020-7225(86)90106-0
[13]   McCarthy MF , Tiersten HF , On integral forms of the balance laws for deformable semiconductors. Archive for Rational Mechanics and Analysis. 1978, 68(1): 27-36 doi: 10.1007/BF00276177
doi: 10.1007/BF00276177
[14]   Navon DH , Semiconductor Microdevices and Materials. 1986, New York: CBS College Publishing
[15]   Pierret RF , Semiconductor Fundamentals, 2nd Edition. 1988, Massachusetts, USA. Addison-Wesley, Reading
[16]   Schülein FJR , Müller K , Bichler M et al. Acoustically regulated carrier injection into a single optically active quantum dot. Physical Review B. 2013, 88(8): 085307 doi: 10.1103/PhysRevB.88.085307
doi: 10.1103/PhysRevB.88.085307
[17]   Sladek J , Sladek V , Pan EN et al. Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals. CMES: Computer Modeling in Engineering & Sciences. 2014, 99(4): 273-296 doi: 10.3970/cmes.2014.099.273
doi: 10.3970/cmes.2014.099.273
[18]   Sladek J , Sladek V , Pan EN et al. Fracture analysis in piezoelectric semiconductors under a thermal load. Engineering Fracture Mechanics. 2014, 126 27-39 doi: 10.1016/j.engfracmech.2014.05.011
doi: 10.1016/j.engfracmech.2014.05.011
[19]   Tiersten HF , Sham TL , On the necessity of including electrical conductivity in the description of piezoelectric fracture in real materials. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1998, 45(1): 1-3 doi: 10.1109/58.646895
doi: 10.1109/58.646895
[20]   Wang J , Zhao WH , Du JK et al. The calculation of electrical parameters of AT-cut quartz crystal resonators with the consideration of material viscosity. Ultrasonics. 2011, 51(1): 65-70 doi: 10.1016/j.ultras.2010.05.009
doi: 10.1016/j.ultras.2010.05.009
[21]   Wang XD , Zhou J , Song JH et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters. 2006, 6(12): 2768-2772 doi: 10.1021/nl061802g
doi: 10.1021/nl061802g
[22]   Wang ZL , Nanopiezotronics. Advanced Materials. 2007, 19(6): 889-892 doi: 10.1002/adma.200602918
doi: 10.1002/adma.200602918
[23]   Wang ZL . Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today. 2010, 5(6): 540-552 doi: 10.1016/j.nantod.2010.10.008
doi: 10.1016/j.nantod.2010.10.008
[24]   Wauer J , Suherman S . Thickness vibrations of a piezo-semiconducting plate layer. International Journal of Engineering Science. 1997, 35(15): 1387-1404 doi: 10.1016/S0020-7225(97)00060-8
doi: 10.1016/S0020-7225(97)00060-8
[25]   White DL . Amplification of ultrasonic waves in piezoelectric semiconductors. Journal of Applied Physics. 1962, 33(8): 2547-2554 doi: 10.1063/1.1729015
doi: 10.1063/1.1729015
[26]   Willatzen M , Christensen J . Acoustic gain in piezoelectric semiconductors at ɛ-near-zero response. Physical Review B. 2014, 89(4): 041201 doi: 10.1103/PhysRevB.89.041201
doi: 10.1103/PhysRevB.89.041201
[27]   Yang JS . An Introduction to the Theory of Piezoelectricity. 2005, Berlin: Springer
[28]   Yang JS , Zhou HG . Acoustoelectric amplification of piezoelectric surface waves. Acta Mechanica. 2004, 172(1-2): 113-122 doi: 10.1007/s00707-004-0140-z
doi: 10.1007/s00707-004-0140-z
[29]   Yang JS , Zhou HG . Amplification of acoustic waves in piezoelectric semiconductor plates. International Journal of Solids and Structures. 2005, 42(11-12): 3171-3183 doi: 10.1016/j.ijsolstr.2004.10.011
doi: 10.1016/j.ijsolstr.2004.10.011
[30]   Yang JS , Yang XM , Turner JA . Amplification of acoustic waves in piezoelectric semiconductor shells. Journal of Intelligent Material Systems and Structures. 2005, 16(7-8): 613-621 doi: 10.1177/1045389X05051626
doi: 10.1177/1045389X05051626
[31]   Yang JS , Song YC , Soh AK . Analysis of a circular piezoelectric semiconductor embedded in a piezoelectric semiconductor substrate. Archive of Applied Mechanics. 2006, 76(7-8): 381-390 doi: 10.1007/s00419-006-0035-7
doi: 10.1007/s00419-006-0035-7
[32]   Yin K , Lin HY , Cai Q et al. Silicon nanowires nanogenerator based on the piezoelectricity of alpha-quartz. Nanoscale. 2013, 5(24): 12330-12334 doi: 10.1039/c3nr03838f
doi: 10.1039/c3nr03838f
[1] Fang He, Zhenhua Huang. Characteristics of orifices for modeling nonlinear power take-off in wave-flume tests of oscillating water column devices[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 329-345.
[2] Dong-fang Hu, Zheng-liang Huang, Jing-yuan Sun, Jing-dai Wang, Zu-wei Liao, Bin-bo Jiang, Jian Yang, Yong-rong Yang. Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(3): 212-224.
[3] Liang Ma, Jun-hong Zhang, Jie-wei Lin, Jun Wang, Xin Lu. Dynamic characteristics analysis of a misaligned rotor–bearing system with squeeze film dampers[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 614-631.
[4] Wen-yang Duan, Yang Han, Rui-feng Wang, Li-min Huang. A predictive controller for joint pitch-roll stabilization[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(5): 399-415.
[5] Zhen-ya Li, Kui-hua Wang, Wen-bing Wu, Chin Jian Leo. Vertical vibration of a large diameter pile embedded in inhomogeneous soil based on the Rayleigh-Love rod theory[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 974-988.
[6] Usama Umer, Jaber Abu Qudeiri, Mohammad Ashfaq, Abdulrahman Al-Ahmari. Chip morphology predictions while machining hardened tool steel using finite element and smoothed particles hydrodynamics methods[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 873-885.
[7] Guan-yi Chen, Wan-qing Li, Hong Chen, Bei-bei Yan. Progress in the aqueous-phase reforming of different biomass-derived alcohols for hydrogen production[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(6): 491-506.
[8] Sha Wang, Guo-ying Feng, Shou-huan Zhou. SESAM fabrication errors and its influence on ultrafast laser cavity design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(4): 326-334.
[9] Zhuan-xi Luo, Zhen-hong Wang, Bin Xu, Ionnis L. Sarakiotis, Gijs Du Laing, Chang-zhou Yan. Measurement and characterization of engineered titanium dioxide nanoparticles in the environment[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(8): 593-605.
[10] Wei-feng Liu, Shao-an Cheng. Microbial fuel cells for energy production from wastewaters: the way toward practical application[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(11): 841-861.
[11] Meng-ge Yu, Ji-ye Zhang, Wei-hua Zhang. Multi-objective optimization design method of the high-speed train head[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(9): 631-641.
[12] Tian Li, Ji-ye Zhang, Wei-hua Zhang. A numerical approach to the interaction between airflow and a high-speed train subjected to crosswind[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(7): 482-493.
[13] Qiao-qiao Zhu, Yan-wei Zhang, Zhi Ying, Jun-hu Zhou, Zhi-hua Wang, Ke-fa Cen. Occurrence of the Bunsen side reaction in the sulfur-iodine thermochemical cycle for hydrogen production[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 300-306.
[14] Juan Almeira, Chang-sheng Peng, Ahmed Abou-Shady. Enhancement of ion transport in porous media by the use of a continuously reoriented electric field[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(7): 546-558.
[15] Xiao-wen Song, Guo-geng Zhang, Yun Wang, Shu-gen Hu. Use of bionic inspired surfaces for aerodynamic drag reduction on motor vehicle body panels[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(7): 543-551.