Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  0, Vol. 7 Issue (101): 345-349    DOI: 10.1631/jzus.2006.AS0345
Geoscience & Chemical Engineering     
Preparation of movable 3D periodic structures of silica spheres
Li Wen-Jiang, Fu Tao
Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Monodispersed silica spheres were prepared by hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of water and ammonia in ethanol medium. The net negative charge on the surface of SiO2 spheres was enhanced after ageing silica spheres under suitable condition. Thus, a novel viscous liquid composed of mono-dispersed silica spheres was obtained. Due to the existing net repulsive forces between particles, the viscous liquid can quickly form a movable 3D periodic ordered structure with vivid color, indicating a high degree of ordering of the particles.

Key wordsSilica spheres      Three-dimensional      Colloidal     
Received: 20 November 2005     
CLC:  O343.2  
  O753  
Cite this article:

Li Wen-Jiang, Fu Tao. Preparation of movable 3D periodic structures of silica spheres. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 0, 7(101): 345-349.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2006.AS0345     OR     http://www.zjujournals.com/xueshu/zjus-a/Y0/V7/I101/345

[1]   Cumpston, B.H., Ananthavel, S.P., Barlow, S., Dyer, D.L., Ehrlich, J.E., Erskine, L.L., Heikal, A.A., Kuebler, S.M., Lee, I.Y.S., McCord-Maughon, D., Qin, J.Q., Rockel, H., Rumi, M., Wu, X.L., Marder, S.R., Perry, J.W., 1999. Two-photon polymerization initiators for 3D optical data storage and microfabrication. Nature, 398(6722):51-54.
doi: 10.1038/17989
[2]   Donselaar, L.N., Philipse, A.P., Suurmond, J., 1997. Concentration-dependent sedimentation of dilute magnetic fluids and magnetic silica dispersions. Langmuir, 13(23): 6018-6025.
doi: 10.1021/la970359+
[3]   Dushkin, C.D., Yoshimura, H., Nagayama, K., 1993. Nucleation and growth of 2D colloidal crystals. Chem. Phys. Lett., 204(5-6):455-460.
doi: 10.1016/0009-2614(93)89186-L
[4]   Gates, B., Qin, D., Xia, Y.N., 1999. Assembly of nanoparticles into opaline structures over large areas. Adv. Mater., 11(6):466-469.
doi: 10.1002/(SICI)1521-4095(199904)11:6<466::AID-ADMA466>3.0.CO;2-E
[5]   Golubev, V.G., Kurdyukov, D.A., Pevtsov, A.B., Sel’kin, A.V., Shadrin, E.B., Il’inskii, A.V., Boeyink, R., 2002. Hysteresis of the photonic band gap in VO2 photonic crystal in the semiconductor-metal phase transition. Semiconductors, 36(9):1043-1047.
doi: 10.1134/1.1507288
[6]   Griesebock, B., Egen, M., Zentel, R., 2002. Large photonic films by crystallization on fluid substrates. Chem. Mat., 14(10):4023-4025.
doi: 10.1021/cm025613k
[7]   Hsiao, S.Y., Wong, D.S.H., Lu, S.Y., 2005. Evaporation-assisted formation of 3D photonic crystals. J. Am. Ceram. Soc., 88(4):974-976.
doi: 10.1111/j.1551-2916.2005.00153.x
[8]   Jiang, P., Bertone, J.F., Hwang, K.S., Colvin, V.L., 1999a. Single-crystal colloidal multilayers of controlled thickness. Chem. Mat., 11(8):2132-2140.
doi: 10.1021/cm990080+
[9]   Jiang, P., Cizeron, J., Bertone, J.F., Colvin, V.L., 1999b. Preparation of macroporous metal films from colloidal crystals. J. Am. Chem. Soc., 121(34):7957-7958.
doi: 10.1021/ja991321h
[10]   Jiang, P., Hwang, K.S., Mittleman, D.M., Bertone, J.F., Colvin, V.L., 1999c. Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids. J. Am. Chem. Soc., 121(50):11630-11637.
doi: 10.1021/ja9903476
[11]   Knight, J.C., Birks, T.A., Russell, P.S., Atkin, D.M., 1996. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett., 21(19):1547-1549.
[12]   Kuai, S.L., Truong, V.V., Hache, A., Hu, X.F., 2004. A comparative study of inverted-opal titania photonic crystals made from polymer and silica colloidal crystal templates. J. Appl. Phys., 96(11):5982-5986.
doi: 10.1063/1.1806551
[13]   Lai, N.D., Liang, W.P., Lin, J.H., Hsu, C.C., Lin, C.H., 2005. Fabrication of 2D and 3D periodic structures by multi-exposure of two-beam interference technique. Opt. Express, 13(23):9605-9611.
doi: 10.1364/OPEX.13.009605
[14]   Mayoral, R., Requena, J., Moya, J.S., Lopez, C., Cintas, A., Miguez, H., Meseguer, F., Vazquez, L., Holgado, M., Blanco, A., 1997. 3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure. Adv. Mater., 9(3):257-260.
doi: 10.1002/adma.19970090318
[15]   Miguez, H., Meseguer, F., Lopez, C., Mifsud, A., Moya, J.S., Vazquez, L., 1997. Evidence of fcc crystallization of SiO2 nanospheres. Langmuir, 13(23):6009-6011.
doi: 10.1021/la970589o
[16]   Nihei, H., Okamoto, A., 2002. Spontaneous emission from a three-level atom placed in 3D photonic crystals in the long-time limit. J. Mod. Opt., 49(9):1463-1477.
doi: 10.1080/09500340110105920
[17]   Ozin, G.A., Yang, S.M., 2001. The race for the photonic chip: colloidal crystal assembly in silicon wafers. Adv. Funct. Mater., 11(2):95-104.
doi: 10.1002/1616-3028(200104)11:2<95::AID-ADFM95>3.0.CO;2-O
[18]   Park, S.H., Xia, Y.N., 1999. Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters. Langmuir, 15(1):266-273.
doi: 10.1021/la980658e
[19]   Pileni, M.P., 1997. Nanosized particles made in colloidal assemblies. Langmuir, 13(13):3266-3276.
doi: 10.1021/la960319q
[20]   Rundquist, P.A., Photinos, P., Jagannathan, S., Asher, S.A., 1989. Dynamical bragg-diffraction from crystalline colloidal arrays. J. Chem. Phys., 91(8):4932-4941.
doi: 10.1063/1.456734
[21]   Schroden, R.C., Blanford, C.F., Melde, B.J., Johnson, B.J.S., Stein, A., 2001. Direct synthesis of ordered macroporous silica materials functionalized with polyoxometalate clusters. Chem. Mat., 13(3):1074-1081.
doi: 10.1021/cm000830b
[22]   Stöber, W., Fink, A., Bohn, E.J., 1968. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci., 26(1):62-69.
doi: 10.1016/0021-9797(68)90272-5
[23]   van Blaaderen, A., Ruel, R., Wiltzius, P., 1997. Template-directed colloidal crystallization. Nature, 385(6614):321-324.
doi: 10.1038/385321a0
[24]   Vos, W.L., Megens, M., van Kats, C.M., Bosecke, P., 1997. X-ray diffraction of photonic colloidal single crystals. Langmuir, 13(23):6004-6008.
doi: 10.1021/la970423n
[1] Zhang-rong ZHAO, Yi-jie WU, Xin-jian GU, Lei ZHANG, Ji-feng YANG. Multi-physics coupling field finite element analysis on giant magnetostrictive materials smart component[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(5): 653-660.
[2] KHELIL N., BENSALAH N., SAIDI H., ZERARKA A.. Artificial perturbation for solving the Korteweg-de Vries equation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(12): 18-.
[3] KHATTRI Sanjay Kumar. An effective quadrilateral mesh adaptation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(12): 10-.
[4] WU Yi-jie, LENG Hong-bin, ZHAO Zhang-rong, CHEN Jun-hua. Research on control method for machining non-cylinder pin hole of piston[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(12): 17-.
[5] CHERALATHAN M., VELRAJ R., RENGANARAYANAN S.. Heat transfer and parametric studies of an encapsulated phase change material based cool thermal energy storage system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(11): 13-.
[6] LI Qi-cheng, WANG Guo-ping, ZHOU Feng. High-extensible scene graph framework based on component techniques[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(7): 1247-1252.
[7] Rahman M. M., Ariffin A. K.. Effects of surface finish and treatment on the fatigue behaviour of vibrating cylinder block using frequency response approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(3): 352-360.
[8] Jain N. C., Gupta P.. Three dimensional free convection couette flow with transpiration cooling[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(3): 11-.
[9] JIANG Ai-min, DING Hao-jiang. The analytical solutions for orthotropic cantilever beams (I): Subjected to surface forces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(2): 126-131.
[10] CHEN Wei-qiu, DING Hao-jiang. Potential theory method for 3D crack and contact problems of multi-field coupled media: A survey[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2004, 5(9): 1009-1021.
[11] CHEN Jiang-ying, DING Hao-jiang, HOU Peng-fei. Analytical solutions of simply supported magnetoelectroelastic circular plate under uniform loads[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2003, 4(5): 560-564.
[12] HOU Peng-fei, DING Hao-jiang, GUAN Fu-ling. A PENNY-SHAPED CRACK IN AN INFINITE PIEZOELECTRIC BODY UNDER ANTISYMMETRIC POINT LOADS[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2001, 2(2): 146-151.
[13] XIONG Su-ming, NI Guang-zheng, HOU Peng-fei. The Reissner-Sagoci problem for transversely isotropic piezoelectric half-space[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(8): 13-.
[14] XU Xin-sheng, GU Qian, LEUNG Andrew Y. T., ZHENG Jian-jun. A symplectic eigensolution method in transversely isotropic piezoelectric cylindrical media[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(8): 2-.
[15] JIANG Ai-min, DING Hao-jiang. The analytical solutions for orthotropic cantilever beams (II): Solutions for density functionally graded beams[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(3): 1-.