Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2005, Vol. 6 Issue ( 8): 2-    DOI: 10.1631/jzus.2005.A0922
    
A symplectic eigensolution method in transversely isotropic piezoelectric cylindrical media
XU Xin-sheng, GU Qian, LEUNG Andrew Y. T., ZHENG Jian-jun
State Key Laboratory of Structure Analysis of Industrial Equipment and Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China; Department of Building and Construction, City University of Hong Kong, Hong Kong, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  This paper reports establishment of a symplectic system and introduces a 3D sub-symplectic structure for transversely isotropic piezoelectric media. A complete space of eigensolutions is obtained directly. Thus all solutions of the problem are reduced to finding eigenvalues and eigensolutions, which include zero-eigenvalue solutions and all their Jordan normal form of the corresponding Hamiltonian matrix and non-zero-eigenvalue solutions. The classical solutions are described by zero-eigensolutions and non-zero-eigensolutions show localized solutions. Numerical results show some rules of non-zero-eigenvalue and their eigensolutions.

Key wordsSymplectic method      Hamiltonian system      Transverse isotropic      Piezoelectric media      Eigensolution     
Received: 18 February 2005     
CLC:  O343.2  
  O343.8  
  TB39  
Cite this article:

XU Xin-sheng, GU Qian, LEUNG Andrew Y. T., ZHENG Jian-jun. A symplectic eigensolution method in transversely isotropic piezoelectric cylindrical media. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6( 8): 2-.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2005.A0922     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2005/V6/I 8/2

[1] Lin-cong CHEN, Rong-hua HUAN, Wei-qiu ZHU. Feedback maximization of reliability of MDOF quasi integrable-Hamiltonian systems under combined harmonic and white noise excitations[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(9): 1245-1251.
[2] Yong WANG, Zu-guang YING, Wei-qiu ZHU. A minimax optimal control strategy for uncertain quasi-Hamiltonian systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(7): 950-954.
[3] Ying YOU, Jing YU, Qiao-yun JIANG. An implicit symmetry constraint of the modified Korteweg-de Vries (mKdV) equation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(10): 1457-1462.
[4] Li Xiang-yong, Wang Min-zhong. General solutions for special orthotropic piezoelectric media[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(3): 335-339.
[5] GU Qian, XU Xin-sheng, LEUNG Andrew Y.T.. Application of Hamiltonian system for two-dimensional transversely isotropic piezoelectric media[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6( 8): 1-.
[6] WANG Yun, XU Rong-qiao, DING Hao-jiang. Free vibration of piezoelectric annular plate[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2003, 4(4): 379-387.