Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  0, Vol. 7 Issue (100): 19-26    DOI: 10.1631/jzus.2006.AS0019
Error Control, Resilience and Concealment     
RTP-based broadcast streaming of high definition H.264/AVC video: an error robustness evaluation
Hillestad Odd Inge, Jetlund Ola, Perkis Andrew
Centre for Quantifiable Quality of Service in Communication Systems, Norwegian University of Science and Technology, Trondheim N-7491, Norway
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this work, we present an evaluation of the performance and error robustness of RTP-based broadcast streaming of high-quality high-definition (HD) H.264/AVC video. Using a fully controlled IP test bed (Hillestad et al., 2005), we broadcast high-definition video over RTP/UDP, and use an IP network emulator to introduce a varying amount of randomly distributed packet loss. A high-performance network interface monitoring card is used to capture the video packets into a trace file. Purpose-built software parses the trace file, analyzes the RTP stream and assembles the correctly received NAL units into an H.264/AVC Annex B byte stream file, which is subsequently decoded by JVT JM 10.1 reference software. The proposed measurement setup is a novel, practical and intuitive approach to perform error resilience testing of real-world H.264/AVC broadcast applications. Through a series of experiments, we evaluate some of the error resilience features of the H.264/AVC standard, and see how they perform at packet loss rates from 0.01% to 5%. The results confirmed that an appropriate slice partitioning scheme is essential to have a graceful degradation in received quality in the case of packet loss. While flexible macroblock ordering reduces the compression efficiency about 1 dB for our test material, reconstructed video quality is improved for loss rates above 0.25%.

Key wordsH.264/AVC      Video streaming      Error robustness     
Received: 26 November 2005     
CLC:  TN919.8  
Cite this article:

Hillestad Odd Inge, Jetlund Ola, Perkis Andrew. RTP-based broadcast streaming of high definition H.264/AVC video: an error robustness evaluation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 0, 7(100): 19-26.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2006.AS0019     OR     http://www.zjujournals.com/xueshu/zjus-a/Y0/V7/I100/19

[1]   Calafate, C.M., Malumbres, M.P., Manconi, P., 2004. Performance of H.264 Compressed Video Streams over 802.11b Based Manets. 24th International Conference on Distributed Computing Systems Workshop, p.776-781.
[2]   DCI & ASC (Digital Cinema Initiatives and the American Society of Cinematographers), 2004. StEM Mini-movie Access Procedyre. Available at http://www.dcimovies. com/.
[3]   Hallbach, T., Olsen, S., 2004. Error Robustness Evaluation of H.264/MPEG-4 AVC. Proceedings of the International Conference on Visual Communications and Image Processing (VCIP).
[4]   Hillestad, O.I., Libak, B., Perkis, A., 2005. Performance Evaluation of Multimedia Services over IP Networks. Proceedings of the IEEE International Conference on Multimedia and Expo (ICME). Amsterdam, the Netherlands.
[5]   ITU-T and ISO/IEC JTC-1, 2003. Advanced Video Coding for Generic Audiovisual Services. ITU-T Rec. H.264 and ISO/IEC 14496-10 (MPEG-4 part 10) AVC.
[6]   Lin, D., Morris, R., 1997. Dynamics of Early Random Detection. ACM SIGCOMM’97. Applications, Technologies, Architectures and Protocols for Computer Communication. Cannes, France.
[7]   Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammar, T., Wedi, T., 2004. Video coding with H.264/AVC: Tools, performance and complexity. IEEE Circuits and Systems Magazine, 4(1):7-28.
doi: 10.1109/MCAS.2004.1286980
[8]   Roth, G., Sjberg, R., Liebl, G., Stockhammar, T., Varsa, V., Karczewicz, M., 2001. Common Test Conditions for RTP/IP over 3GPP/3GPP2. ITU-T SG16, VCEG-M77.doc.
[9]   Schwarz, H., Marpe, D., Wiegand, T., 2005. Hierarchical B Pictures. Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG Document JVT-PO14.
[10]   Stockhammar, T., Hannuksela, M.H., Wiegand, T., 2003. H.264/AVC in wireless environments. IEEE Trans. on Circuits and Systems for Video Technology, 13(7): 657-673.
doi: 10.1109/TCSVT.2003.815167
[11]   Sullivan, G.J., Wiegand, T., 2004. Video compression—from concepts to the H.264/AVC standard. Proceedings of the IEEE, 86(5):18-31.
[12]   Sullivan, G.J., Topiwala, P., Luthra, A., 2004. The H.264/AVC Advanced Video Coding Standard: Overview and Introduction to the Fidelity Range Extension. SPIE Conference on Applications of Digital Image Processing, XXVII.
[13]   Wang, Y.K., Hannuksela, M.M., Varsa, V., 2002. The Error Concealment Feature in the H.26l Test Model. Proceedings of the IEEE International Conference on Image Processing, 2:729-732.
[14]   Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., 2004. Image quality assessment: From error visibility to structural similarity. IEEE Trans. on Image Processing, 13(4):600-612.
doi: 10.1109/TIP.2003.819861
[15]   Wenger, S., 2001. Common Test Conditions for Wire-Line Low Delay IP/UDP/RTP Packet Loss Resilient Testing. ITU-T SG16, VCEG-N79r1.doc.
[16]   Wenger, S., 2003a. H.264/AVC over IP. IEEE Trans. on Circuits and Systems for Video Technology, 13(7):645-656.
doi: 10.1109/TCSVT.2003.814966
[17]   Wenger, S., 2003b. Error Patterns for Internet Experiments. ITU-T VCEG, Document Q15-I16r1.
[18]   Wenger, S., Hannuksela, M.M., Stockhammar, T., Westerlund, M., Singer, D., 2005. RTP Payload Format for H.264 Video. IETF, Request for Comments, RFC 3984.
[19]   Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A., 2003. Overview of the H.264/AVC video coding standard. IEEE Trans. on Circuits and Systems for Video Technology, 560(576):282-300.
[1] Hua ZHANG, Xiang TIAN, Yao-wu CHEN. A video structural similarity quality metric based on a joint spatial-temporal visual attention model[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(12): 1696-1704.
[2] Han-jie MA, Fan ZHOU, Rong-xin JIANG, Yao-wu CHEN. A network-aware error-resilient method using prioritized intra refresh for wireless video communications[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1169-1176.
[3] Hu WEI, Tao LIN, Zheng-hui LIN. Parallel processing architecture of H.264 adaptive deblocking filters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1160-1168.
[4] Byeongdu LA, Minyoung EOM, Yoonsik CHOE. Dominant edge direction based fast intra mode decision in the H.264/AVC encoder[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(6): 767-777.
[5] Sheng-bo CHEN, Wei CHEN, Wei-lan HUANG, Li-jun ZHAI, Xu-ming LIU. A cross-layer approach to enable multipacket transmission in MIMO-SDMA based WLAN[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(2): 271-278.
[6] Jun-yan HUO, Yi-lin CHANG, Hai-tao YANG, Shuai WAN. Color compensation for multi-view video coding based on diversity of cameras[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(12): 1631-1637.
[7] Wan-yi LI, Lu YU. Highly parallel implementation of sub-pixel interpolation for AVS HDTV decoder[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(12): 1638-1643.
[8] Yi-xiong ZHANG, Wei-dong WANG, Peng LIU, Qing-dong YAO. Frame rate up-conversion using multiresolution critical point filters with occlusion refinement[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(12): 1621-1630.
[9] Kai LUO, Dong-xiao LI, Ming ZHANG. High throughput bandwidth optimized VLSI design for motion compensation in AVS HDTV decoder[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(6): 822-832.
[10] Jin-feng ZHANG, Rong-gang WANG, Jian-wei NIU, Yuan DONG, Hai-la WANG. Rate-distortion optimized bitstream switching for peer-to-peer live streaming[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(4): 445-456.
[11] Xiang-wen WANG, Jun SUN, Rong XIE, Song-yu YU. Efficient video downscaling transcoder from MPEG-2 to H.264[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(4): 457-463.
[12] Gui-xu LIN, Shi-bao ZHENG. Perceptual importance analysis for H.264/AVC bit allocation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(2): 225-231.
[13] KUMARAYAPA Ajith, ZHANG Ye. More efficient ground truth ROI image coding technique: implementation and wavelet based application analysis[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(6): 835-840.
[14] WU Jing, YE Xiu-qing, GU Wei-kang. An adaptive fuzzy filter for coding artifacts removal in video and image[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(6): 841-848.
[15] LI Ji-liang, FANG Xiang-zhong, HOU Jun. Mean shift based log-Gabor wavelet image coding[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(4): 620-624.