Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2003, Vol. 4 Issue (1): 69-75    DOI: 10.1631/jzus.2003.0069
Chemistry & Chemical Engineering     
Molecular dynamics simulation study on behaviors of liquid 1,2-dichloroethane under external electric fields
DU Zhi-qiang, CHEN Cheng-long
Department of Chemistry, Zhejiang University, Hangzhou 310027, China; Department of Chemistry, National Sun Yat-Sen University,Kaohsiung 80424, Taiwan, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Molecular dynamics simulation was carried out to study the behavior of liquid 1,2-dichloroethane molecules under external electric fields including direct current field, alternating current field and positive-half-period cosin field. The maximum applied field strength was 108 V/m, the maximum frequency of the alternating current field and that of the positive-half-period cosine field was 1012 Hz. The simulation revealed that the field type and field strength act on the population of the molecular configuration. In the strong direct current field, all trans forms converted completely into gauche forms. Order parameter and the correlation of the system torsion angle were also investigated. The results suggested that these two dynamical parameters depended also on the field type and the field strength. The maximum of order parameter was found to be at 0.6 in the strong direct current field.

Key wordsMolecular dynamics      Simulation      External electric field      Liquid 1,2-dichloroethane     
Received: 07 December 2001     
CLC:  O6-39  
Cite this article:

DU Zhi-qiang, CHEN Cheng-long. Molecular dynamics simulation study on behaviors of liquid 1,2-dichloroethane under external electric fields. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2003, 4(1): 69-75.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2003.0069     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2003/V4/I1/69

[1] Yi-feng Wu, Hao Wang, Ai-qun Li, Dong-ming Feng, Ben Sha, Yu-ping Zhang. Explicit finite element analysis and experimental verification of a sliding lead rubber bearing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 363-376.
[2] Xiao-wen Song, Peng-zhe Lin, Rui Liu, Pei Zhou. Skin friction reduction characteristics of variable ovoid non-smooth surfaces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 59-66.
[3] Tian-tian Zhang, Wei Huang, Zhen-guo Wang, Li Yan. A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 632-645.
[4] Zhen-yu Wang, Yang Zhao, Guo-wei Ma, Zhi-guo He. A numerical study on the high-velocity impact behavior of pressure pipes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 443-453.
[5] Han-jiang Lai, Jun-jie Zheng, Rong-jun Zhang, Ming-juan Cui. Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(10): 803-817.
[6] Antoine Dumas, Jean-Yves Dantan, Nicolas Gayton, Thomas Bles, Robin Loebl. An iterative statistical tolerance analysis procedure to deal with linearized behavior models[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(5): 353-360.
[7] Qi-hua Ran, Qun Qian, Wei Li, Xu-dong Fu, Xiao Yu, Yue-ping Xu. Impact of earthquake-induced-landslides on hydrologic response of a steep mountainous catchment: a case study of the Wenchuan earthquake zone[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 131-142.
[8] Chun-ping Gu, Guang Ye, Wei Sun. A review of the chloride transport properties of cracked concrete: experiments and simulations[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 81-92.
[9] Wei-yun Shao, Li-jie Jiang, Lei Fang, David Z. Zhu, Zhi-lin Sun. Assessment of the safe evacuation of people walking through flooding staircases based on numerical simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 117-130.
[10] Xiang-lei Zhang, Bin Yao, Wei Feng, Zhi-huang Shen, Meng-meng Wang. Modeling of a virtual grinding wheel based on random distribution of multi-grains and simulation of machine-process interaction[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(11): 874-884.
[11] Ming-xiang Yang, Yun-zhong Jiang, Xing Lu, Hong-li Zhao, Yun-tao Ye, Yu Tian. A weather research and forecasting model evaluation for simulating heavy precipitation over the downstream area of the Yalong River Basin[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 18-37.
[12] Xiang Hu, Li Xie, Chuang Mi, Dian-hai Yang. Calibration and validation of an activated sludge model for a pilot-scale anoxic/anaerobic/aerobic/post-anoxic process[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(9): 743-752.
[13] Peng-fei Li, Qian Fang, Ding-li Zhang. Analytical solutions of stresses and displacements for deep circular tunnels with liners in saturated ground[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 395-404.
[14] Tian Li, Ji-ye Zhang, Wei-hua Zhang. A numerical approach to the interaction between airflow and a high-speed train subjected to crosswind[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(7): 482-493.
[15] Jie Mao, Zhi-yong Hao, Kang Zheng, Guo-xi Jing. Experimental validation of sound quality simulation and optimization of a four-cylinder diesel engine[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(5): 341-352.