Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2008, Vol. 9 Issue (9): 1264-1269    DOI: 10.1631/jzus.A0820217
Civil and Mechanical Engineering     
Optimal design of pressure vessel using an improved genetic algorithm
Peng-fei LIU, Ping XU, Shu-xin HAN, Jin-yang ZHENG
Institute of Chemical Machinery and Process Equipment, Zhejiang University, Hangzhou 310027, China; Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China; Hangzhou Special Equipment Inspection Institute, Hangzhou 310003, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  As the idea of simulated annealing (SA) is introduced into the fitness function, an improved genetic algorithm (GA) is proposed to perform the optimal design of a pressure vessel which aims to attain the minimum weight under burst pressure constraint. The actual burst pressure is calculated using the arc-length and restart analysis in finite element analysis (FEA). A penalty function in the fitness function is proposed to deal with the constrained problem. The effects of the population size and the number of generations in the GA on the weight and burst pressure of the vessel are explored. The optimization results using the proposed GA are also compared with those using the simple GA and the conventional Monte Carlo method.

Key wordsPressure vessel      Optimal design      Genetic algorithm (GA)      Simulated annealing (SA)      Finite element analysis (FEA)     
Received: 05 March 2008     
CLC:  TH12  
Cite this article:

Peng-fei LIU, Ping XU, Shu-xin HAN, Jin-yang ZHENG. Optimal design of pressure vessel using an improved genetic algorithm. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1264-1269.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A0820217     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2008/V9/I9/1264

[1] Yao-bin Zhuo, Xue-yan Xiang, Xiao-jun Zhou, Hao-liang Lv, Guo-yang Teng. A method for the global optimization of the tooth contact pattern and transmission error of spiral bevel and hypoid gears[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 377-392.
[2] Chih-Hung Chen, Hsuan-Teh Hu, Fu-Ming Lin, Hsin-Hsin Hsieh. Residual stress analysis and bow simulation of crystalline silicon solar cells[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 49-58.
[3] Xiao-ping Ouyang, Bo-qian Fan, Hua-yong Yang, Shuo Ding. A novel multi-objective optimization method for the pressurized reservoir in hydraulic robotics[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 454-467.
[4] Hao Zheng, Yi-xiong Feng, Jian-rong Tan, Zhi-feng Zhang, Zi-xian Zhang. An integrated cognitive computing approach for systematic conceptual design[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 286-294.
[5] Hsuan-Teh Hu, Shih-Tsung Tseng, Alice Hu. Finite element modeling of superplastic co-doped yttria-stabilized tetragonal-zirconia polycrystals[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 989-999.
[6] Jin Cheng, Ming-yang Tang, Zhen-yu Liu, Jian-rong Tan. Direct reliability-based design optimization of uncertain structures with interval parameters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 841-854.
[7] Zhi-feng Zhang, Yi-xiong Feng, Jian-rong Tan, Wei-qiang Jia, Guo-dong Yi. A novel approach for parallel disassembly design based on a hybrid fuzzy-time model[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(9): 724-736.
[8] Cun-jian Miao, Jin-yang Zheng, Xiao-zhe Gao, Ze Huang, A-bin Guo, Du-yi Ye, Li Ma. Investigation of low-cycle fatigue behavior of austenitic stainless steel for cold-stretched pressure vessels[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(1): 31-37.
[9] Hong-yan Wang, Xiao-biao Shan, Tao Xie. An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(7): 526-537.
[10] Francisco J. Martinez-Martin, Fernando Gonzalez-Vidosa, Antonio Hospitaler, Víctor Yepes. Multi-objective optimization design of bridge piers with hybrid heuristic algorithms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 420-432.
[11] Al Emran Ismail, Ahmad Kamal Ariffin, Shahrum Abdullah, Mariyam Jameelah Ghazali, Mohammed Abdulrazzaq, Ruslizam Daud. Stress intensity factors under combined bending and torsion moments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(1): 1-8.
[12] Daisuke Maruyama, Hitoshi Kimura, Michihiko Koseki, Norio Inou. Driving force and structural strength evaluation of a flexible mechanical system with a hydrostatic skeleton[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(4): 255-262.
[13] Hong-li QI, Hui ZHAO, Wei-wen LIU, Hai-bo ZHANG. Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1205-1212.
[14] Shervin VAKILI, Sied Mehdi FAKHRAIE, Siamak MOHAMMADI, Ali AHMADI. Low-cost fault tolerance in evolvable multiprocessor systems: a graceful degradation approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(6): 922-926.
[15] Mohsen GITIZADEH, Mohsen KALANTAR. Optimum allocation of FACTS devices in Fars Regional Electric Network using genetic algorithm based goal attainment[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(4): 478-487.