Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2012, Vol. 13 Issue (1): 1-8    DOI: 10.1631/jzus.A1100040
Mechanics     
Stress intensity factors under combined bending and torsion moments
Al Emran Ismail, Ahmad Kamal Ariffin, Shahrum Abdullah, Mariyam Jameelah Ghazali, Mohammed Abdulrazzaq, Ruslizam Daud
Faculty of Mechanical & Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia; Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; School of Mechatronic Engineering, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  This paper discusses stress intensity factor (SIF) calculations for surface cracks in round bars subjected to combined torsion and bending loadings. Different crack aspect ratios, a/b, ranging from 0.0 to 1.2 and relative crack depths, a/D, ranging from 0.1 to 0.6 were considered. Since the loading was non-symmetrical for torsion loadings, a whole finite element model was constructed. Then, the individual and combined bending and torsion loadings were remotely applied to the model. The equivalent SIF method, F*EQ, was then used explicitly to combine the individual SIFs from the bending and torsion loadings. A comparison was then carried out with the combined SIF, F*FE, obtained using the finite element analysis (FEA) under similar loadings. It was found that the equivalent SIF method successfully predicted the combined SIF for Mode I. However, discrepancies between the results determined from the different approaches occurred when FIII was involved. It was also noted that the predicted F*FE using FEA was higher than the F*EQ predicted through the equivalent SIF method due to the difference in crack face interactions.

Key wordsStress intensity factor (SIF)      Combined loadings      Finite element analysis (FEA)      Surface cracks      Round solid bars     
Received: 20 February 2011      Published: 04 January 2012
CLC:  O39  
Cite this article:

Al Emran Ismail, Ahmad Kamal Ariffin, Shahrum Abdullah, Mariyam Jameelah Ghazali, Mohammed Abdulrazzaq, Ruslizam Daud. Stress intensity factors under combined bending and torsion moments. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(1): 1-8.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1100040     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2012/V13/I1/1

[1] Chih-Hung Chen, Hsuan-Teh Hu, Fu-Ming Lin, Hsin-Hsin Hsieh. Residual stress analysis and bow simulation of crystalline silicon solar cells[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 49-58.
[2] Hsuan-Teh Hu, Shih-Tsung Tseng, Alice Hu. Finite element modeling of superplastic co-doped yttria-stabilized tetragonal-zirconia polycrystals[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 989-999.
[3] Devi Chandra, Judha Purbolaksono, Yusoff Nukman, Haw-ling Liew, Singh Ramesh, Mohsen-abdel Hassan. Fatigue growth of a surface crack in a V-shaped notched round bar under cyclic tension[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(11): 873-882.
[4] Hong-yan Wang, Xiao-biao Shan, Tao Xie. An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(7): 526-537.
[5] Daisuke Maruyama, Hitoshi Kimura, Michihiko Koseki, Norio Inou. Driving force and structural strength evaluation of a flexible mechanical system with a hydrostatic skeleton[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(4): 255-262.
[6] Hui LUO, Hong-ping ZHU, Yu MIAO, Chuan-yao CHEN. Simulation of top-down crack propagation in asphalt pavements[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(3): 223-230.
[7] Peng-fei LIU, Ping XU, Shu-xin HAN, Jin-yang ZHENG. Optimal design of pressure vessel using an improved genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1264-1269.
[8] Peng-fei LIU, Jin-yang ZHENG, Li MA, Cun-jian MIAO, Lin-lin WU. Calculations of plastic collapse load of pressure vessel using FEA[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(7): 900-906.
[9] Xiao LIU, Yun-yue YE, Zhuo ZHENG, Qin-fen LU. Magnetic field and performance analysis of a tubular permanent magnet linear synchronous motor applied in elevator door system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(4): 572-576.
[10] MA Gai-ling, XU Hong, CUI Wen-yong. Computation of rolling resistance caused by rubber hysteresis of truck radial tire[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(5): 778-785.