Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2016, Vol. 17 Issue (7): 502-511    DOI: 10.1631/jzus.A1600166
Articles     
Energy harvesting from pavement via polyvinylidene fluoride: hybrid piezo-pyroelectric effects
Junliang Tao, Jie Hu
Department of Civil Engineering, The University of Akron, ASEC 210, Akron, OH 44325-3905, USA
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  In the USA, there are over 4 million miles (6 million km) of roadways and more than 250 million registered vehicles. Energy lost in the pavement system due to traffic-induced vibration and deformation is enormous. If effectively harvested, such energy can serve as an alternative sustainable energy source that can be easily integrated into the transportation system. It is well known that most piezoelectric materials are also pyroelectric materials, which convert temperature change into electricity. However, the potential of polyvinylidene fluoride (PVDF) as a hybrid piezo-pyroelectric energy harvester has been seldom studied. The uniqueness of this study lies in that the electrical responses of PVDF under coupled mechanical and thermal stimulations are investigated. Through a series of well controlled experiments, it is found that there exists an interesting coupling phenomenon between piezoelectric and pyroelectric effects of PVDF: the voltage generated by simultaneous mechanical and thermal stimulations is the algebraic sum of voltages generated by separate stimulations. This means that there is neither strengthening nor weakening coupling effect when the piezoelectric and pyroelectric phenomena are coupled. This also makes the modeling process of the hybrid piezoelectric and pyroelectric effect straightforward. An estimation of power generation through piezoelectric and pyroelectric effect is conducted, and the overall effects of temperature on hybrid piezo-pyroelectric energy harvesting are discussed.

Key wordsEnergy harvesting      Pavement      Piezoelectric      Pyroelectric      Hybrid     
Received: 18 February 2016      Published: 05 July 2016
CLC:  U41  
  TK01  
Cite this article:

Junliang Tao, Jie Hu. Energy harvesting from pavement via polyvinylidene fluoride: hybrid piezo-pyroelectric effects. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(7): 502-511.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1600166     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2016/V17/I7/502

[1] Chun-li Zhang, Xiao-yuan Wang, Wei-qiu Chen, Jia-shi Yang. Carrier distribution and electromechanical fields in a free piezoelectric semiconductor rod[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 37-44.
[2] Hong-yan Wang, Li-hua Tang, Yuan Guo, Xiao-biao Shan, Tao Xie. A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(9): 711-722.
[3] Yao-zhi Luo, Chao Yang. A vector-form hybrid particle-element method for modeling and nonlinear shell analysis of thin membranes exhibiting wrinkling[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(5): 331-350.
[4] Hu Zhang, Cun-lei Wang, Yong Zhang, Jun-yi Liang, Cheng-liang Yin. Drivability improvements for a single-motor parallel hybrid electric vehicle using robust controls[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(4): 291-301.
[5] Jie Zhang, Guang-xu Han, Xin-biao Xiao, Rui-qian Wang, Yue Zhao, Xue-song Jin. Influence of wheel polygonal wear on interior noise of high-speed trains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1002-1018.
[6] Jun-yi Liang, Jian-long Zhang, Xi Zhang, Shi-fei Yuan, Cheng-liang Yin. Energy management strategy for a parallel hybrid electric vehicle equipped with a battery/ultra-capacitor hybrid energy storage system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(8): 535-553.
[7] Xiao-biao Shan, Shi-wei Guan, Zhang-shi Liu, Zhen-long Xu, Tao Xie. A new energy harvester using a piezoelectric and suspension electromagnetic mechanism[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(12): 890-897.
[8] Hong-yan Wang, Xiao-biao Shan, Tao Xie. An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(7): 526-537.
[9] Ji-en Ma, Bin Zhang, Xiao-yan Huang, You-tong Fang, Wen-ping Cao. Design and analysis of the hybrid excitation rail eddy brake system of high-speed trains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 936-944.
[10] Liang Yan, I-Ming Chen, Song-huat Yeo, Yan Chen, Gui-lin Yang. A high-dexterity low-degree-of-freedom hybrid manipulator structure for robotic lion dance[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(4): 240-249.
[11] Shuo Hung Chang, Jen Bon Lee. Design of a long range nano-scale resolution mechanism[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(4): 250-254.
[12] Azuma Okamoto, Mitsumasa Sugawara. Solving composite scheduling problems using the hybrid genetic algorithm[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(12): 953-958.
[13] Wei-wei XIONG, Yong ZHANG, Cheng-liang YIN. Configuration design, energy management and experimental validation of a novel series-parallel hybrid electric transit bus[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(9): 1269-1276.
[14] Jiang-bo YUAN, Tao XIE, Xiao-biao SHAN, Wei-shan CHEN. Resonant frequencies of a piezoelectric drum transducer[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(9): 1313-1319.
[15] Jiang-bo YUAN, Xiao-biao SHAN, Tao XIE, Wei-shan CHEN. Energy harvesting with a slotted-cymbal transducer[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1187-1190.