Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2012, Vol. 13 Issue (6): 433-444    DOI: 10.1631/jzus.A1100315
Civil Engineering     
Model tests on interaction between soil and geosynthetics subjected to localized subsidence in landfills
Bin Zhu, Deng Gao, Jun-chao Li, Yun-min Chen
MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  In a landfill, excessive tensile strains or failure of the liner system due to localized subsidence underneath the geosynthetic liner, is a concern in design and operation of the landfill. The localized subsidence can be commonly withstood by reinforcements such as geogrids. A total of nine model tests were carried out to study the influence of soil arching in overburden sandy soil on the geosynthetics and the interaction between the soil and the geosynthetics. The localized subsidence was modeled by a strip trapdoor under the geosynthetic reinforcements. The reinforcement includes several layers of polyvinylchlorid (PVC) membrane or both PVC membrane and a compacted clay layer. Test results show that the vertical soil pressure acting on the geosynthetics within the subsidence zone is strongly related to the deflection of the geosynthetics. The soil pressure acting on the deflected geosynthetics will decrease to a minimum value with respect to its deflection if the final deflection is large enough, and this minimum value is almost independent of the overburden height. Otherwise, the deflection of geosynthetics cannot result in a full degree of soil arching, and the soil pressure within the subsidence zone increases with the increase of overburden height. Deflections and strains of the geosynthetics obviously decrease with the increase of their tensile stiffness. The presence of a compacted clay layer buffer can therefore reduce both deflections and strains of the geosynthetics. Finally, a composite liner structure is recommended for landfills to withstand the localized subsidences.

Key wordsLandfill      Soil arching      Trapdoor      Model test      Geosynthetics     
Received: 15 November 2011      Published: 04 June 2012
CLC:  TU411.93  
Cite this article:

Bin Zhu, Deng Gao, Jun-chao Li, Yun-min Chen. Model tests on interaction between soil and geosynthetics subjected to localized subsidence in landfills. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 433-444.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1100315     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2012/V13/I6/433

[1] Chi Guan, Hai-jian Xie, Zhan-hong Qiu, Yun-min Chen, Pei-xiong Chen. One-dimensional coupled model for landfill gas and water transport in layered unsaturated soil cover systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 667-676.
[2] Liang-tong Zhan, Qing-wen Qiu, Wen-jie Xu, Yun-min Chen. Field measurement of gas permeability of compacted loess used as an earthen final cover for a municipal solid waste landfill[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(7): 541-552.
[3] Jia-long Jiao, Hui-long Ren, Shu-zheng Sun, Christiaan Adika Adenya. Investigation of a ship’s hydroelasticity and seakeeping performance by means of large-scale segmented self-propelling model sea trials[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 468-484.
[4] Han-jiang Lai, Jun-jie Zheng, Rong-jun Zhang, Ming-juan Cui. Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(10): 803-817.
[5] Xiao-bo Ruan, Shu-lin Sun, Wen-liang Liu. Effect of the amplification factor on seismic stability of expanded municipal solid waste landfills using the pseudo-dynamic method#[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(10): 731-738.
[6] Yi-kai Fan, Zu-yu Chen, Xiang-qian Liang, Xue-dong Zhang, Xin Huang. Geotechnical centrifuge model tests for explosion cratering and propagation laws of blast wave in sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(5): 335-343.
[7] Yan-jie Wei, Min Ji, Guo-yi Li, Fei-fei Qin. Microbial and hydrodynamic properties of aerobic granules in a sequencing batch reactor treating landfill leachate[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(3): 219-229.
[8] Wan-huan Zhou, Ren-peng Chen, Lin-shuang Zhao, Zheng-zhong Xu, Yun-min Chen. A semi-analytical method for the analysis of pile-supported embankments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(11): 888-894.
[9] Chuan He, Kun Feng, Yong Fang, Ying-chao Jiang. Surface settlement caused by twin-parallel shield tunnelling in sandy cobble strata[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(11): 858-869.
[10] Xian-zhi WANG, Jun-jie ZHENG, Jian-hua YIN. On composite foundation with different vertical reinforcing elements under vertical loading: a physical model testing study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(2): 80-87.
[11] Hai-jian XIE, Yun-min CHEN, Liang-tong ZHAN, Ren-peng CHEN, Xiao-wu TANG, Ru-hai CHEN, Han KE. Investigation of migration of pollutant at the base of Suzhou Qizishan landfill without a liner system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(3): 439-449.
[12] Yan-guo ZHOU, Yun-min CHEN, Yoshiharu ASAKA, Tohru ABE. Surface-mounted bender elements for measuring horizontal shear wave velocity of soils[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(11): 1490-1496.
[13] HU Min-yun, CHEN Yun-min. ENGINEERING ASPECTS OF LANDFILLING MUNICIPAL SOLID WASTE[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2001, 2(1): 34-40.