Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2012, Vol. 13 Issue (5): 335-343    DOI: 10.1631/jzus.A1100227
Civil Engineering     
Geotechnical centrifuge model tests for explosion cratering and propagation laws of blast wave in sand
Yi-kai Fan, Zu-yu Chen, Xiang-qian Liang, Xue-dong Zhang, Xin Huang
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100044, China; School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  This paper presents the explosion cratering effects and their propagation laws of blast waves in dry standard sands using a 450 g-t geotechnical centrifuge apparatus. Ten centrifuge model tests were completed with various ranges of explosive mass, burial depth and centrifuge accelerations. Eleven accelerometers were installed to record the acceleration response in sand. The dimensions of the explosion craters were measured after the tests. The results demonstrated that the relationship between the dimensionless parameters of cratering efficiency and gravity scaled yield is a power regression function. Three specific function equations were obtained. The results are in general agreement with those obtained by other studies. A scaling law based on the combination of the π terms was used to fit the results of the ten model tests with a correlation coefficient of 0.931. The relationship can be conveniently used to predict the cratering effects in sand. The results also showed that the peak acceleration is a power increasing function of the acceleration level. An empirical exponent relation between the proportional peak acceleration and distance is proposed. The propagation velocity of blast waves is found to be ranged between 200 and 714 m/s.

Key wordsCentrifuge model tests      Explosion      Craters      Blast waves      Sand     
Received: 19 September 2011      Published: 04 May 2012
CLC:  TU411  
Cite this article:

Yi-kai Fan, Zu-yu Chen, Xiang-qian Liang, Xue-dong Zhang, Xin Huang. Geotechnical centrifuge model tests for explosion cratering and propagation laws of blast wave in sand. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(5): 335-343.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1100227     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2012/V13/I5/335

[1] Hossein Rezaei, Ramli Nazir, Ehsan Momeni. Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 273-285.
[2] Jin Yu, Shao-jie Chen, Xu Chen, Ya-zhou Zhang, Yan-yan Cai. Experimental investigation on mechanical properties and permeability evolution of red sandstone after heat treatments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(9): 749-759.
[3] Kah Yen Foong, U. Johnson Alengaram, Mohd Zamin Jumaat, Kim Hung Mo. Enhancement of the mechanical properties of lightweight oil palm shell concrete using rice husk ash and manufactured sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 59-69.
[4] Yi-ou Shen, Wesley Cantwell, Yan Li. Skin-core adhesion in high performance sandwich structures[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(1): 61-67.
[5] Yaser Jafarian, Ali Ghorbani, Siavash Salamatpoor, Sina Salamatpoor. Monotonic triaxial experiments to evaluate steady-state and liquefaction susceptibility of Babolsar sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(10): 739-750.
[6] Hong-bing Xiong, Wen-guang Yu, Da-wei Chen, Xue-ming Shao. Numerical study on the aerodynamic performance and safe running of high-speed trains in sandstorms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 971-978.
[7] Meen-wah Gui. Numerical modeling of an advancing hydraulically-driven pile in sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(1): 15-23.
[8] I. Hosseinpour, S. H. Mirmoradi, A. Barari, M. Omidvar. Numerical evaluation of sample size effect on the stress-strain behavior of geotextile-reinforced sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(8): 555-562.
[9] Xian-zhi WANG, Jun-jie ZHENG, Jian-hua YIN. On composite foundation with different vertical reinforcing elements under vertical loading: a physical model testing study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(2): 80-87.
[10] James C. Ni, Wen-chieh Cheng. Using fracture grouting to lift structures in clayey sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(11): 879-886.
[11] Jun-xiang XU, Xi-la LIU. Analysis of structural response under blast loads using the coupled SPH-FEM approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1184-1192.
[12] Yan-guo ZHOU, Yun-min CHEN, Yoshiharu ASAKA, Tohru ABE. Surface-mounted bender elements for measuring horizontal shear wave velocity of soils[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(11): 1490-1496.
[13] Yan-guo ZHOU, Yun-min CHEN, Hao-jiang DING, Wei-qiu CHEN. Modeling of sensor function for piezoelectric bender elements[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(1): 1-7.
[14] ZHANG Feng, LI Zhi-ping, WANG He-lin, WU Jian, TAN Zhen-hua. Sands modeling constrained by high-resolution seismic data[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(11): 1858-1863.
[15] ZHOU Yan-guo, CHEN Yun-min, KE Han. Correlation of liquefaction resistance with shear wave velocity based on laboratory study using bender element[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(8): 805-812.