Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2013, Vol. 14 Issue (10): 739-750    DOI: 10.1631/jzus.A1300032
Civil Engineering     
Monotonic triaxial experiments to evaluate steady-state and liquefaction susceptibility of Babolsar sand
Yaser Jafarian, Ali Ghorbani, Siavash Salamatpoor, Sina Salamatpoor
International Institute of Earthquake Engineering and Seismology, Tehran, Iran; Faculty of Engineering, University of Guilan, Rasht, Iran; International Branch, University of Guilan, Rasht, Iran
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  In this study, drained and undrained triaxial tests under isotropic and anisotropic consolidations were conducted on reconstituted samples of Babolsar sand, which underlies a densely populated, seismic region of the southern coast of the Caspian Sea, Mazandaran, Iran. It was demonstrated that the sand experienced all possible states of liquefiable soil: flow failure, limited flow, and dilation. The steady-state and flow liquefaction lines of this sand were presented and compared with previously tested sands. It is shown that the initial stress anisotropy can affect the potential of volume change and pore pressure generation. The steady-state line (SSL), however, remains identical for the isotropically and anisotropically consolidated specimens under drained and undrained conditions. The tests data were then analyzed in order to investigate the liquefaction susceptibility of this sand in terms of parameters such as the state parameter, relative state parameter index, and lateral earth pressure ratio at failure.

Key wordsTriaxial test      Sand      Steady-state      Liquefaction susceptibility     
Received: 21 January 2013      Published: 07 October 2013
CLC:  TU4  
Cite this article:

Yaser Jafarian, Ali Ghorbani, Siavash Salamatpoor, Sina Salamatpoor. Monotonic triaxial experiments to evaluate steady-state and liquefaction susceptibility of Babolsar sand. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(10): 739-750.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1300032     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2013/V14/I10/739

[1] Hossein Rezaei, Ramli Nazir, Ehsan Momeni. Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 273-285.
[2] Jin Yu, Shao-jie Chen, Xu Chen, Ya-zhou Zhang, Yan-yan Cai. Experimental investigation on mechanical properties and permeability evolution of red sandstone after heat treatments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(9): 749-759.
[3] Kah Yen Foong, U. Johnson Alengaram, Mohd Zamin Jumaat, Kim Hung Mo. Enhancement of the mechanical properties of lightweight oil palm shell concrete using rice husk ash and manufactured sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 59-69.
[4] Yi-ou Shen, Wesley Cantwell, Yan Li. Skin-core adhesion in high performance sandwich structures[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(1): 61-67.
[5] Yi-kai Fan, Zu-yu Chen, Xiang-qian Liang, Xue-dong Zhang, Xin Huang. Geotechnical centrifuge model tests for explosion cratering and propagation laws of blast wave in sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(5): 335-343.
[6] An-feng Hu, Bo Sun, Kang-he Xie. Steady-state response of a saturated half-space with an overlying dry layer subjected to a moving load[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(1): 33-43.
[7] Hong-bing Xiong, Wen-guang Yu, Da-wei Chen, Xue-ming Shao. Numerical study on the aerodynamic performance and safe running of high-speed trains in sandstorms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 971-978.
[8] Meen-wah Gui. Numerical modeling of an advancing hydraulically-driven pile in sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(1): 15-23.
[9] I. Hosseinpour, S. H. Mirmoradi, A. Barari, M. Omidvar. Numerical evaluation of sample size effect on the stress-strain behavior of geotextile-reinforced sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(8): 555-562.
[10] Xian-zhi WANG, Jun-jie ZHENG, Jian-hua YIN. On composite foundation with different vertical reinforcing elements under vertical loading: a physical model testing study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(2): 80-87.
[11] James C. Ni, Wen-chieh Cheng. Using fracture grouting to lift structures in clayey sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(11): 879-886.
[12] Ying XU, Chang-fu ZONG, Hsiao-hsiang NA, Lei LIU. Investigations on control algorithm of steady-state cornering and control strategy for dynamical correction in a steer-by-wire system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(6): 900-908.
[13] Yan-guo ZHOU, Yun-min CHEN, Yoshiharu ASAKA, Tohru ABE. Surface-mounted bender elements for measuring horizontal shear wave velocity of soils[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(11): 1490-1496.
[14] Yan-guo ZHOU, Yun-min CHEN, Hao-jiang DING, Wei-qiu CHEN. Modeling of sensor function for piezoelectric bender elements[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(1): 1-7.
[15] ZHANG Feng, LI Zhi-ping, WANG He-lin, WU Jian, TAN Zhen-hua. Sands modeling constrained by high-resolution seismic data[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(11): 1858-1863.