Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2005, Vol. 6 Issue (8): 805-812    DOI: 10.1631/jzus.2005.A0805
Civil Engineering     
Correlation of liquefaction resistance with shear wave velocity based on laboratory study using bender element
ZHOU Yan-guo, CHEN Yun-min, KE Han
Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Recent studies using field case history data yielded new criteria for evaluating liquefaction potential in saturated granular deposits based on in situ, stress-corrected shear wave velocity. However, the conditions of relatively insufficient case histories and limited site conditions in this approach call for additional data to more reliably define liquefaction resistance as a function of shear wave velocity. In this study, a series of undrained cyclic triaxial tests were conducted on saturated sand with shear wave velocity Vs measured by bender element. By normalizing the data with respect to minimum void ratio, the test results, incorporated with previously published laboratory data, statistically revealed good correlation of cyclic shear strength with small-strain shear modulus for sandy soils, which is almost irrespective of soil types and confining pressures. The consequently determined cyclic resistance ratio, CRR, was found to be approximately proportional to Vs4. Liquefaction resistance boundary curves were established by applying this relationship and compared to liquefaction criteria derived from seismic field measurements. Although in the range of Vs1>200 m/s the presented curves are moderately conservative, they are remarkably consistent with the published field performance criteria on the whole.

Key wordsLiquefaction resistance      Shear wave velocity      Sand      Cyclic triaxial test      Laboratory correlation      Bender element     
Received: 22 July 2004     
CLC:  TU411.8  
  TU435  
Cite this article:

ZHOU Yan-guo, CHEN Yun-min, KE Han. Correlation of liquefaction resistance with shear wave velocity based on laboratory study using bender element. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(8): 805-812.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2005.A0805     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2005/V6/I8/805

[1] Hossein Rezaei, Ramli Nazir, Ehsan Momeni. Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 273-285.
[2] Jin Yu, Shao-jie Chen, Xu Chen, Ya-zhou Zhang, Yan-yan Cai. Experimental investigation on mechanical properties and permeability evolution of red sandstone after heat treatments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(9): 749-759.
[3] Kah Yen Foong, U. Johnson Alengaram, Mohd Zamin Jumaat, Kim Hung Mo. Enhancement of the mechanical properties of lightweight oil palm shell concrete using rice husk ash and manufactured sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 59-69.
[4] Yi-ou Shen, Wesley Cantwell, Yan Li. Skin-core adhesion in high performance sandwich structures[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(1): 61-67.
[5] Yaser Jafarian, Ali Ghorbani, Siavash Salamatpoor, Sina Salamatpoor. Monotonic triaxial experiments to evaluate steady-state and liquefaction susceptibility of Babolsar sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(10): 739-750.
[6] Yi-kai Fan, Zu-yu Chen, Xiang-qian Liang, Xue-dong Zhang, Xin Huang. Geotechnical centrifuge model tests for explosion cratering and propagation laws of blast wave in sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(5): 335-343.
[7] Hong-bing Xiong, Wen-guang Yu, Da-wei Chen, Xue-ming Shao. Numerical study on the aerodynamic performance and safe running of high-speed trains in sandstorms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 971-978.
[8] Meen-wah Gui. Numerical modeling of an advancing hydraulically-driven pile in sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(1): 15-23.
[9] I. Hosseinpour, S. H. Mirmoradi, A. Barari, M. Omidvar. Numerical evaluation of sample size effect on the stress-strain behavior of geotextile-reinforced sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(8): 555-562.
[10] Xian-zhi WANG, Jun-jie ZHENG, Jian-hua YIN. On composite foundation with different vertical reinforcing elements under vertical loading: a physical model testing study[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(2): 80-87.
[11] James C. Ni, Wen-chieh Cheng. Using fracture grouting to lift structures in clayey sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(11): 879-886.
[12] Yan-guo ZHOU, Yun-min CHEN, Yoshiharu ASAKA, Tohru ABE. Surface-mounted bender elements for measuring horizontal shear wave velocity of soils[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(11): 1490-1496.
[13] Yan-guo ZHOU, Yun-min CHEN, Hao-jiang DING, Wei-qiu CHEN. Modeling of sensor function for piezoelectric bender elements[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(1): 1-7.
[14] ZHANG Feng, LI Zhi-ping, WANG He-lin, WU Jian, TAN Zhen-hua. Sands modeling constrained by high-resolution seismic data[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(11): 1858-1863.
[15] ZHOU Yan-guo, CHEN Yun-min, HUANG Bo. Experimental study of seismic cyclic loading effects on small strain shear modulus of saturated sands[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6( 3): 11-.