Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2007, Vol. 8 Issue (3 ): 20-    DOI: 10.1631/jzus.2007.A0453
    
Research on the overload protection reliability of moulded case circuit-breakers and its test device
LI Kui, LU Jian-guo, WU Yi, QIN Zhi-jun, YAO Dong-mei
Electrical Apparatus Institute, Hebei University of Technology, Tianjin 300130, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  This paper analyzed the reliability and put forward the reliability index of overload protection for moulded case circuit breaker. The success rate was adopted as its reliability index of overload protection. Based on the reliability index and the reliability level, the reliability examination plan was analyzed and a test device for the overload protection of moulded case circuit-breaker was developed. In the reliability test of overload protection, two power sources were used, which reduced the time of conversion and regulation between two different test currents in the overload protection test, which made the characteristic test more accurate. The test device was designed on the base of a Windows system, which made its operation simple and friendly.

Key wordsMoulded case circuit breakers      Overload protection      Reliability      Test device     
Received: 19 December 2006     
CLC:  TB114.3  
  O224  
  O211.6  
Cite this article:

LI Kui, LU Jian-guo, WU Yi, QIN Zhi-jun, YAO Dong-mei. Research on the overload protection reliability of moulded case circuit-breakers and its test device. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(3 ): 20-.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2007.A0453     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2007/V8/I3 /20

[1] Cao Wang, Quan-wang Li, Long Pang, A-ming Zou. Estimating the time-dependent reliability of aging structures in the presence of incomplete deterioration information[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(9): 677-688.
[2] Cheng-ming Lan , Hui Li, Jun-Yi Peng , Dong-Bai Sun . A structural reliability-based sensitivity analysis method using particles swarm optimization: relative convergence rate[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 961-973.
[3] Jin Cheng, Ming-yang Tang, Zhen-yu Liu, Jian-rong Tan. Direct reliability-based design optimization of uncertain structures with interval parameters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 841-854.
[4] Cao Wang, Quan-wang Li, A-ming Zou, Long Zhang. A realistic resistance deterioration model for time-dependent reliability analysis of aging bridges[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(7): 513-524.
[5] Satoru Sone. Comparison of the technologies of the Japanese Shinkansen and Chinese High-speed Railways[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 769-780.
[6] P. W. Chan, Y. F. Lee. Performance of LIDAR- and radar-based turbulence intensity measurement in comparison with anemometer-based turbulence intensity estimation based on aircraft data for a typical case of terrain-induced turbulence in association with a typhoon[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(7): 469-481.
[7] Ping Tan, Wei-ting He, Jia Lin, Hong-ming Zhao, Jian Chu. Design and reliability, availability, maintainability, and safety analysis of a high availability quadruple vital computer system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 926-935.
[8] Jian-yun Chen, Qiang Xu, Jing Li, Shu-li Fan. Improved response surface method for anti-slide reliability analysis of gravity dam based on weighted regression[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(6): 432-439.
[9] Lin-cong CHEN, Rong-hua HUAN, Wei-qiu ZHU. Feedback maximization of reliability of MDOF quasi integrable-Hamiltonian systems under combined harmonic and white noise excitations[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(9): 1245-1251.
[10] Juan WANG, Dan FENG, Fang WANG, Cheng-tao LU. Extending attributes page: a scheme for enhancing the reliability of storage system metadata[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1106-1113.
[11] Xiao-hui TAN, Jian-guo WANG. Finite element reliability analysis of slope stability[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(5): 645-652.
[12] Mojtaba VALINATAJ, Siamak MOHAMMADI, Saeed SAFARI. Reliability assessment of networks-on-chip based on analytical models[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(12): 1801-1814.
[13] Xun ZHOU, Xiao-li YU. Fatigue crack growth rate test using a frequency sweep method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(3): 346-350.
[14] WANG Shu-juan, SHA You-tao, ZHANG Hui, ZHAI Guo-fu. Method of reliability tolerance design based on EDA technology and its application on DC hybrid contactor[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(3 ): 15-.
[15] YE Xue-rong, LIANG Hui-min, ZHAI Guo-fu. Discussion on dynamic reliability tolerance design technology of electromagnetic relay[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(3 ): 17-.