Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2010, Vol. 11 Issue (6): 432-439    DOI: 10.1631/jzus.A0900709
Civil and Mechanical Engineering     
Improved response surface method for anti-slide reliability analysis of gravity dam based on weighted regression
Jian-yun Chen, Qiang Xu, Jing Li, Shu-li Fan
State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China, School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116023, China)
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The aim of this study was to design and construct an improved response surface method (RSM) based on weighted regression for the anti-slide reliability analysis of concrete gravity dam. The limitation and lacuna of the traditional RSM were briefly analyzed. Firstly, based on small experimental points, research was devoted to an improved RSM with singular value decomposition techniques. Then, the method was used on the basis of weighted regression and deviation coefficient correction to reduce iteration times and experimental points and improve the calculation method of checking point. Finally, a test example was given to verify this method. Compared with other conventional algorithms, this method has some strong advantages: this algorithm not only saves the arithmetic operations but also greatly enhances the calculation efficiency and the storage efficiency.

Key wordsResponse surface method (RSM)      Reliability      Gravity dam      Singular value decomposition      Weighted regression      Deviation coefficient     
Received: 16 November 2009      Published: 02 June 2010
CLC:  TV314  
Cite this article:

Jian-yun Chen, Qiang Xu, Jing Li, Shu-li Fan. Improved response surface method for anti-slide reliability analysis of gravity dam based on weighted regression. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(6): 432-439.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A0900709     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2010/V11/I6/432

[1] Cao Wang, Quan-wang Li, Long Pang, A-ming Zou. Estimating the time-dependent reliability of aging structures in the presence of incomplete deterioration information[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(9): 677-688.
[2] Cheng-ming Lan , Hui Li, Jun-Yi Peng , Dong-Bai Sun . A structural reliability-based sensitivity analysis method using particles swarm optimization: relative convergence rate[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 961-973.
[3] Jin Cheng, Ming-yang Tang, Zhen-yu Liu, Jian-rong Tan. Direct reliability-based design optimization of uncertain structures with interval parameters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 841-854.
[4] Jin-yu Zhou, Wu-jun Chen, Bing Zhao, Zhen-yu Qiu, Shi-lin Dong. Distributed indeterminacy evaluation of cable-strut structures: formulations and applications[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(9): 737-748.
[5] Cao Wang, Quan-wang Li, A-ming Zou, Long Zhang. A realistic resistance deterioration model for time-dependent reliability analysis of aging bridges[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(7): 513-524.
[6] Satoru Sone. Comparison of the technologies of the Japanese Shinkansen and Chinese High-speed Railways[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 769-780.
[7] P. W. Chan, Y. F. Lee. Performance of LIDAR- and radar-based turbulence intensity measurement in comparison with anemometer-based turbulence intensity estimation based on aircraft data for a typical case of terrain-induced turbulence in association with a typhoon[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(7): 469-481.
[8] Qiang Xu, Jian-yun Chen, Jing Li, Gang Xu. Coupled elasto-plasticity damage constitutive models for concrete[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 256-267.
[9] Ping Tan, Wei-ting He, Jia Lin, Hong-ming Zhao, Jian Chu. Design and reliability, availability, maintainability, and safety analysis of a high availability quadruple vital computer system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 926-935.
[10] Lin-cong CHEN, Rong-hua HUAN, Wei-qiu ZHU. Feedback maximization of reliability of MDOF quasi integrable-Hamiltonian systems under combined harmonic and white noise excitations[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(9): 1245-1251.
[11] Juan WANG, Dan FENG, Fang WANG, Cheng-tao LU. Extending attributes page: a scheme for enhancing the reliability of storage system metadata[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1106-1113.
[12] Xiao-hui TAN, Jian-guo WANG. Finite element reliability analysis of slope stability[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(5): 645-652.
[13] Mojtaba VALINATAJ, Siamak MOHAMMADI, Saeed SAFARI. Reliability assessment of networks-on-chip based on analytical models[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(12): 1801-1814.
[14] Yuan YANG, Hai-lin ZHANG. A simplified MMSE-based iterative receiver for MIMO systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(10): 1389-1394.
[15] Xun ZHOU, Xiao-li YU. Fatigue crack growth rate test using a frequency sweep method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(3): 346-350.