Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2006, Vol. 7 Issue (5 ): 17-    DOI: 10.1631/jzus.2006.A0811
    
An embedded packet train and adaptive FEC scheme for effective video adaptation over wireless broadband networks
Huang Chih-wei, Hwang Jenq-neng
Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  With the rapid growth of wireless broadband technologies, such as WLAN and WiMAX, quality streaming video contents are available through portable devices anytime, anywhere. The layered multicast system using scalable video codecs has been proposed as an efficient architecture for video dissemination taking account of user and link diversities. However, in the wired/wireless combined best-effort based heterogeneous IP networks which provide more fluctuation in available bandwidth and end-to-end delay, the performance of streaming systems has been greatly degraded due to frequent packet loss, resulting from either wired congestion or wireless fading/shadowing. In this paper, we present a real-time embedded packet train probing scheme for estimating end-to-end available bandwidth so as to accomplish effective congestion and error control. This is facilitated by effective classification of packet loss sources, delay trend detection algorithm and flexible transmission rate of packets. Under the proper wireless channel modelling and estimation, our layered structure can allow appropriate subscription of video layers and adaptively insert necessary amount of forward error correction (FEC) packets so as to achieve QoS optimized system for scalable video multicasting.

Key wordsAdaptive FEC      Available bandwidth estimation      Layered streaming      Congestion control algorithm     
Received: 15 December 2005     
CLC:  TN919.8  
Cite this article:

Huang Chih-wei, Hwang Jenq-neng. An embedded packet train and adaptive FEC scheme for effective video adaptation over wireless broadband networks. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(5 ): 17-.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2006.A0811     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2006/V7/I5 /17

[1] Hua ZHANG, Xiang TIAN, Yao-wu CHEN. A video structural similarity quality metric based on a joint spatial-temporal visual attention model[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(12): 1696-1704.
[2] Hu WEI, Tao LIN, Zheng-hui LIN. Parallel processing architecture of H.264 adaptive deblocking filters[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1160-1168.
[3] Han-jie MA, Fan ZHOU, Rong-xin JIANG, Yao-wu CHEN. A network-aware error-resilient method using prioritized intra refresh for wireless video communications[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1169-1176.
[4] Byeongdu LA, Minyoung EOM, Yoonsik CHOE. Dominant edge direction based fast intra mode decision in the H.264/AVC encoder[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(6): 767-777.
[5] Sheng-bo CHEN, Wei CHEN, Wei-lan HUANG, Li-jun ZHAI, Xu-ming LIU. A cross-layer approach to enable multipacket transmission in MIMO-SDMA based WLAN[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(2): 271-278.
[6] Jun-yan HUO, Yi-lin CHANG, Hai-tao YANG, Shuai WAN. Color compensation for multi-view video coding based on diversity of cameras[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(12): 1631-1637.
[7] Wan-yi LI, Lu YU. Highly parallel implementation of sub-pixel interpolation for AVS HDTV decoder[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(12): 1638-1643.
[8] Yi-xiong ZHANG, Wei-dong WANG, Peng LIU, Qing-dong YAO. Frame rate up-conversion using multiresolution critical point filters with occlusion refinement[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(12): 1621-1630.
[9] Kai LUO, Dong-xiao LI, Ming ZHANG. High throughput bandwidth optimized VLSI design for motion compensation in AVS HDTV decoder[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(6): 822-832.
[10] Jin-feng ZHANG, Rong-gang WANG, Jian-wei NIU, Yuan DONG, Hai-la WANG. Rate-distortion optimized bitstream switching for peer-to-peer live streaming[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(4): 445-456.
[11] Xiang-wen WANG, Jun SUN, Rong XIE, Song-yu YU. Efficient video downscaling transcoder from MPEG-2 to H.264[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(4): 457-463.
[12] Gui-xu LIN, Shi-bao ZHENG. Perceptual importance analysis for H.264/AVC bit allocation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(2): 225-231.
[13] KUMARAYAPA Ajith, ZHANG Ye. More efficient ground truth ROI image coding technique: implementation and wavelet based application analysis[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(6): 835-840.
[14] WU Jing, YE Xiu-qing, GU Wei-kang. An adaptive fuzzy filter for coding artifacts removal in video and image[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(6): 841-848.
[15] LI Ji-liang, FANG Xiang-zhong, HOU Jun. Mean shift based log-Gabor wavelet image coding[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(4): 620-624.