Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2001, Vol. 2 Issue (3): 257-260    DOI: 10.1631/jzus.2001.0257
Science & Engineering     
A CLASS OF MARCINKIEWICZ INTEGRAL OPERATORS ON PRODUCT DOMAINS
YING Yi-ming, LIU Xiao-feng
Department of Mathematics, Zhejiang University, Hangzhou 310028, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, the author proves that the Lp-boundedness of the Marcinkiewicz integral μΩ on product domains Rn×Rm; for Ω(1)∩(5) improves the result of Chen et al. (2000).

Key wordsMarcinkiewicz integral operator      rough kernel      product domains      square functions     
Received: 18 June 2000     
CLC:  O174  
Cite this article:

YING Yi-ming, LIU Xiao-feng. A CLASS OF MARCINKIEWICZ INTEGRAL OPERATORS ON PRODUCT DOMAINS. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2001, 2(3): 257-260.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2001.0257     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2001/V2/I3/257

[1] Bao-rong WEI, Yi ZHAO. Weighted approximation of functions with singularities by Bernstein operators[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(10): 1451-1456.
[2] ZHANG Chun-jie, QIAN Rui-rui. A note on the Marcinkiewicz integral operators on Fpα,q[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(12): 2037-2040.
[3] XIAN Jun. Reconstruction algorithm in lattice-invariant signal spaces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6(7): 760-763.
[4] JIANG Hai-yi. A general version of the Morse-Sard theorem[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2004, 5(7): 754-758.
[5] WU Zheng-chang. Vector refinement equation and subdivision schemes in Lp spaces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2002, 3(3): 332-338.
[6] CHEN Zhi-guo. Riemann surface with almost positive definite metric*[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6( 7): 23-.
[7] YU Dan-sheng, WEI Bao-rong. On Tur¨¢n type inequality with doubling weights and A* weights[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6( 7): 26-.
[8] Chen Zhi-Guo. A problem on extremal quasiconformal extensions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 2): 198-202.
[9] Chen Zhi-Guo. A problem on extremal quasiconformal extensions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 0, (): 198-202.