Applied Mathematics |
|
|
|
|
Vector refinement equation and subdivision schemes in Lp spaces |
WU Zheng-chang |
Department of Mathematics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract In this paper we will first prove that the nontrivial Lp solutions of the vector refinement equation exist if and only if the corresponding subdivision scheme with a suitable initial function converges in Lp without assumption of the stability of the solutions. Then we obtain a characterization of the convergence of the subdivision scheme in terms of the mask. This gives a complete answer to the existence of Lp solutions of the refinement equation and the convergence of the corresponding subdivision schemes.
|
Received: 21 April 2001
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|