Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (8): 750-765    DOI: 10.1631/FITEE.1500162
    
RePizer: a framework for prioritization of software requirements
Saif Ur Rehman Khan, Sai Peck Lee, Mohammad Dabbagh, Muhammad Tahir, Muzafar Khan, Muhammad Arif
Department of Software Engineering, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia; Faculty of Computing and Information Technology, University of Jeddah, Jeddah 21589, Saudi Arabia; College of Computer and Information Sciences (Muzahmiyah Branch), King Saud University, Riyadh 11362, Saudi Arabia; Department of Computer Science, University of Gujrat, Gujrat 50700, Pakistan
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The standard software development life cycle heavily depends on requirements elicited from stakeholders. Based on those requirements, software development is planned and managed from its inception phase to closure. Due to time and resource constraints, it is imperative to identify the high-priority requirements that need to be considered first during the software development process. Moreover, existing prioritization frameworks lack a store of historical data useful for selecting the most suitable prioritization technique of any similar project domain. In this paper, we propose a framework for prioritization of software requirements, called RePizer, to be used in conjunction with a selected prioritization technique to rank software requirements based on defined criteria such as implementation cost. RePizer assists requirements engineers in a decision-making process by retrieving historical data from a requirements repository. RePizer also provides a panoramic view of the entire project to ensure the judicious use of software development resources. We compared the performance of RePizer in terms of expected accuracy and ease of use while separately adopting two different prioritization techniques, planning game (PG) and analytical hierarchy process (AHP). The results showed that RePizer performed better when used in conjunction with the PG technique.

Key wordsSoftware requirements      Requirements prioritization techniques      Prioritization framework      Planning game      Analytical hierarchy process     
Received: 18 May 2015      Published: 05 August 2016
CLC:  TP311  
Cite this article:

Saif Ur Rehman Khan, Sai Peck Lee, Mohammad Dabbagh, Muhammad Tahir, Muzafar Khan, Muhammad Arif. RePizer: a framework for prioritization of software requirements. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 750-765.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500162     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I8/750


RePizer:一种软件需求排序架构

概要:标准的软件开发周期很大程度上取决于利益相关方的需求。软件开发全程围绕需求设计和管理。考虑到时间和资源的限制,必须分清哪些是必须首先考虑的高优先级需求。已有的需求排序架构缺少对历史数据的记录,而这些历史数据有助于从类似项目中方便地选取最适合的需求排序技术。本文中,我们提出一种名为RePizer的软件需求排序架构,该架构与一种选定的需求排序技术联合使用,可以基于给定标准(如开发成本),为软件需求优先级排序。RePizer通过从需求库提取历史数据,为软件需求工程师决策提供协助。此外,RePizer提供了对整个项目的全景式视角,以确保对资源的审慎使用。基于RePizer架构,采用已有的两种需求排序技术:计划博弈(planning game, PG)和层级分析(analytical hierarchy process, AHP),分别比较各自的预期准确度和易用程度。结果表明,采用计划博弈时,RePizer性能更佳。

关键词: 软件需求,  需求排序技术,  排序架构,  计划博弈,  层级分析 
[1] Deng Chen, Yan-duo Zhang, Wei Wei, Shi-xun Wang, Ru-bing Huang, Xiao-lin Li, Bin-bin Qu, Sheng Jiang. Efficient vulnerability detection based on an optimized rule-checking static analysis technique[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 332-345.
[2] Long-xiang Wang, Xiao-she Dong, Xing-jun Zhang, Yin-feng Wang, Tao Ju, Guo-fu Feng. TextGen: a realistic text data content generation method for modern storage system benchmarks[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 982-993.
[3] Shahab Pourtalebi, Imre Horváth. Information schema constructs for defining warehouse databases of genotypes and phenotypes of system manifestation features[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 862-884.
[4] Mohammad Alshayeb, Nasser Khashan, Sajjad Mahmood. A framework for an integrated unified modeling language[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 143-159.
[5] Hui-zong Li, Xue-gang Hu, Yao-jin Lin, Wei He, Jian-han Pan. A social tag clustering method based on common co-occurrence group similarity[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 122-134.
[6] Dipayan DEV,Ripon PATGIRI. Dr. Hadoop: an infinite scalable metadata management for Hadoop—How the baby elephant becomes immortal[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(1): 15-31.
[7] Ignacio Marin, Francisco Ortin, German Pedrosa, Javier Rodriguez. Generating native user interfaces for multiple devices by means of model transformation[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(12): 995-1017.
[8] Hong Yin, Shu-qiang Yang, Xiao-qian Zhu, Shao-dong Ma, Lu-min Zhang. Symbolic representation based on trend features for knowledge discovery in long time series[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(9): 744-758.
[9] Ping Xie, Jian-zhong Huang, Er-wei Dai, Qiang Cao, Chang-sheng Xie. An efficient data layout scheme for better I/O balancing in RAID-6 storage systems[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 335-345.
[10] Xiao-xia Zhang, Qiang-hua Xiao, Bin Li, Sai Hu, Hui-jun Xiong, Bi-hai Zhao. Overlap maximum matching ratio (OMMR): a new measure to evaluate overlaps of essential modules[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 293-300.
[11] Yu-xiang Li, Yin-liang Zhao, Bin Liu, Shuo Ji. Optimization of thread partitioning parameters in speculative multithreading based on artificial immune algorithm[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(3): 205-216.
[12] László Lengyel, Hassan Charaf. Test-driven verification/validation of model transformations[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 85-97.
[13] Alireza Parvizi-Mosaed, Shahrouz Moaven, Jafar Habibi, Ghazaleh Beigi, Mahdieh Naser-Shariat. Towards a self-adaptive service-oriented methodology based on extended SOMA[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(1): 43-69.
[14] Zi-ying Dai, Xiao-guang Mao, Li-qian Chen, Yan Lei. Automatic recovery from resource exhaustion exceptions by collecting leaked resources[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(8): 622-635.
[15] Juan J. Cuadrado-Gallego, Alain Abran, Pablo Rodriguez-Soria, Miguel A. Lara. An experimental study on the conversion between IFPUG and UCP functional size measurement units[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(3): 161-173.