Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (3): 258-264    DOI: 10.1631/FITEE.1500210
    
Design and simulation of a standing wave oscillator based PLL
Wei Zhang, You-de Hu, Li-rong Zheng
State Key Lab of ASIC & System, Fudan University, Shanghai 200433, China; Pack Vinn Excellence Center, School of ICT, Royal Institute of Technology (KTH) Eletrum 229, Kista-Stockholm 16440, Sweden
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  A standing wave oscillator (SWO) is a perfect clock source which can be used to produce a high frequency clock signal with a low skew and high reliability. However, it is difficult to tune the SWO in a wide range of frequencies. We introduce a frequency tunable SWO which uses an inversion mode metal-oxide-semiconductor (IMOS) field-effect transistor as a varactor, and give the simulation results of the frequency tuning range and power dissipation. Based on the frequency tunable SWO, a new phase locked loop (PLL) architecture is presented. This PLL can be used not only as a clock source, but also as a clock distribution network to provide high quality clock signals. The PLL achieves an approximately 50% frequency tuning range when designed in Global Foundry 65 nm 1P complementary metal-oxide-semiconductor (CMOS) technology, and can be used directly in a high performance multi-core microprocessor.

Key wordsStanding wave oscillator (SWO)      Clock distribution      Phase locked loop (PLL)      Varactor     
Received: 06 July 2015      Published: 07 March 2016
CLC:  TN432  
Cite this article:

Wei Zhang, You-de Hu, Li-rong Zheng. Design and simulation of a standing wave oscillator based PLL. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 258-264.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500210     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I3/258


基于驻波振荡器的PLL设计与仿真

目的:基于标准CMOS工艺实现频率可调节驻波振荡器结构,研究该结构在高性能微处理器中的应用方式并实现基于该结构的PLL设计。
创新点:分析了反型MOS管可变电容在驻波振荡器中不同分布方式对频率调节范围和功耗的影响,根据分析结果设计了基于频率可调节驻波振荡器的PLL。该PLL不仅实现了50%的时钟调节范围,而且可以作为时钟分布网络直接应用于多核处理器结构中。
方法:首先分析了不同阈值对反型MOS管可变电容的影响(图3),提出了基于该可变电容结构的两类驻波振荡器频率调节方式(图4),通过仿真对比分析了两者频率调节和功耗的差异(图5、6)。然后基于分析结果设计了基于频率可调节驻波振荡器的PLL(图7),分析了该PLL的频率锁定过程(图9)。最后分析了该PLL在高性能微处理器设计中的应用方式(图11)。
结论:采用反型MOS管可变电容可实现频率可调节驻波振荡器结构,基于该驻波振荡器可以设计频率调节范围达到50%的PLL,满足高性能微处理器对时钟的要求。

关键词: 驻波振荡器,  时钟分布,  可变电容,  变抗器 
[1] Liang Geng , Ji-Zhong Shen , Cong-Yuan Xu . Power-efficient dual-edge implicit pulse-triggered flip-flop with an embedded clock-gating scheme[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 962-972.
[2] Mao-qun Yao, Li-bin Zhang. Emitter-couple logic circuit design based on the threshold-arithmetic algebraic system[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(10): 808-814.
[3] Li-heng Lou, Ling-ling Sun, Jun Liu, Hai-jun Gao. An efficient PSP-based model for optimized cross-coupled MOSFETs in voltage controlled oscillator[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 205-213.
[4] Yi-die Ye, Le-nian He, Ya-dan Shen. A low drift current reference based on PMOS temperature correction technology[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(12): 937-943.
[5] Zhi-hua Ning, Le-nian He. A low drift curvature-compensated bandgap reference with trimming resistive circuit[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(8): 698-706.
[6] Yi Wei, Ji-zhong Shen. Design of a novel low power 8-transistor 1-bit full adder cell[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(7): 604-607.
[7] Xiao-ying Wang, Wen-ting Guo, Yang-yang Peng, Wen-quan Sui. GaAs pHEMT multi-band/multi-mode SP9T switch for quad-band GSM and UMTS handsets applications[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(4): 317-322.