有损耗波导中光传播的新计算处理
目的:通过改进算子步进方法,实现快速、高精度计算光在有损耗波导中传播性态,有效指导光波导的优化设计。
创新点:提出用共轭微分矩阵在算子步进方法中进行局部基转换,避免了求逆运算。所提处理方法提高了步进计算的稳定性,改善了传播计算精度。
方法:针对光波在有损耗波导中传播的数学模型-带有复折射率的Helmholtz方程,对基于DtN(Dirichlet-to-Neumann)映射(把边值问题化为初值问题)的单侧重构算子步进求解方法进行改进。一方面用切比雪夫伪谱方法离散方程的横向算子,另一方面为避免求逆,采用共轭微分矩阵在算子步进方法中实施局部基转换;最后,用改进所得的算子步进求解方法计算波在有损耗波导中的传播性态。
结论:对带有复折射率的Helmholtz方程的边值问题求解,提出了改进算子步进求解方法。实施该方法能快速、高精度地求解此问题,并得到光波在有损耗波导中传播真实性态,进而有助于光电器件的优化设计。
关键词:
伴随算子,
正交,
切比雪夫,
伪谱方法,
共轭微分矩阵,
Dirichlet-to-Neumann映射