Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (8): 654-657    DOI: 10.1631/FITEE.1500082
    
Boundedness of Marcinkiewicz integral with rough kernel on Triebel-Lizorkin spaces
Chun-jie Zhang, Fang-fang Ren, Yu-huai Zhang, Gui-lian Gao
Department of Mathematics, Hangzhou Dianzi University, Hangzhou 310016, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This paper is a continuation of our previous work (Zhang and Chen, 2010b). Following the same general steps of the proof there, we make essential improvement on our previous theorem by recalculating a key inequality. Our result shows that the Marcinkiewicz integral, with a bounded radial function in its kernel, is still bounded on the Triebel-Lizorkin space.

Key wordsMarcinkiewicz integral      Triebel-Lizorkin spaces     
Received: 18 March 2015      Published: 04 August 2015
CLC:  O174.5  
Cite this article:

Chun-jie Zhang, Fang-fang Ren, Yu-huai Zhang, Gui-lian Gao. Boundedness of Marcinkiewicz integral with rough kernel on Triebel-Lizorkin spaces. Front. Inform. Technol. Electron. Eng., 2015, 16(8): 654-657.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500082     OR     http://www.zjujournals.com/xueshu/fitee/Y2015/V16/I8/654


带粗糙核的Marcinkiewicz积分在Triebel-Lizorkin空间的有界性

目的:研究带有径向粗糙项的Marcinkiewicz积分,证明这类积分算子也有Triebel-Lizorkin有界性。
创新点:沿用向量值奇异积分将粗糙核算子光滑化的思路,证明转后的算子具有更好的光滑性条件。
方法:首先利用本文作者之前文章的方法,把带径向粗糙项的Marckinkiewicz积分转化成研究一些具有一定光滑性的算子(需反复利用向量值奇异积分定理)。然后,利用微分指标较低时,Triebel-Lizorkin空间的一个等刻画,把Triebel-Lizorkin有界性转化成向量值的Lebesgue空间有界性。于是我们只需要研究这些有光滑性算子的向量值Lebesgue空间有界性,这整套方法是作者之前系列文章的一个整体思路。本文也利用这套思路,在该框架下,研究转化后算子的核,得到关于这个核的更精细估计,从而推广了原有结果。
结论:对于带有径向粗糙项的算子,同样可以得到一般的Marcinkiewicz积分在Triebel-Lizorkin空间的有界性。

关键词: Marcinkiewicz积分,  Triebel-Lizorkin空间 
No related articles found!