Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (7): 579-593    DOI: 10.1631/FITEE.14a0230
    
Push recovery for the standing under-actuated bipedal robot using the hip strategy
Chao Li, Rong Xiong, Qiu-guo Zhu, Jun Wu, Ya-liang Wang, Yi-ming Huang
State Key Laboratory of Industrial Control Technology & Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This paper presents a control algorithm for push recovery, which particularly focuses on the hip strategy when an external disturbance is applied on the body of a standing under-actuated biped. By analyzing a simplified dynamic model of a bipedal robot in the stance phase, it is found that horizontal stability can be maintained with a suitably controlled torque applied at the hip. However, errors in the angle or angular velocity of body posture may appear, due to the dynamic coupling of the translational and rotational motions. To solve this problem, different hip strategies are discussed for two cases when (1) external disturbance is applied on the center of mass (CoM) and (2) external torque is acting around the CoM, and a universal hip strategy is derived for most disturbances. Moreover, three torque primitives for the hip, depending on the type of disturbance, are designed to achieve translational and rotational balance recovery simultaneously. Compared with closed-loop control, the advantage of the open-loop methods of torque primitives lies in rapid response and reasonable performance. Finally, simulation studies of the push recovery of a bipedal robot are presented to demonstrate the effectiveness of the proposed methods.

Key wordsPush recovery      Balance control      Bipedal robot      Hip strategy     
Received: 30 July 2014      Published: 06 July 2015
CLC:  TP242  
Cite this article:

Chao Li, Rong Xiong, Qiu-guo Zhu, Jun Wu, Ya-liang Wang, Yi-ming Huang. Push recovery for the standing under-actuated bipedal robot using the hip strategy. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 579-593.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.14a0230     OR     http://www.zjujournals.com/xueshu/fitee/Y2015/V16/I7/579


基于髋策略的欠驱动双足机器人站立抗扰动恢复控制

目的:稳定站立和姿态保持是双足机器人正常作业的前提,但各种不确定的外部扰动不可避免。机器人需要通过协调关节运动使其快速恢复到原先的稳定站立状态。
创新点:本文提出一种开环bang-bang-bang控制方法,根据扰动情况设计髋关节力矩曲线,可以同时恢复欠驱动双足机器人的平衡状态和身体姿态。与闭环控制相比,本方法恢复更为迅速。
方法:首先,将外力扰动情况分为3类:1)外力通过质心,扰动仅改变平衡状态不改变身体姿态;2)外力矩扰动,扰动仅改变身体姿态不改变平衡状态;3)外力不通过质心,扰动同时改变平衡状态和身体姿态(图2)。然后,针对不同扰动情况提出对应的3种开环bang-bang-bang控制方法以及对应的髋关节力矩曲线:1)针对扰动情况1的STB控制(式14),在恢复水平稳定状态的同时不改变原先的身体直立姿态;2)针对扰动情况2的ATB控制(式18),在恢复身体直立姿态的同时不改变水平稳定状态;3)针对扰动情况3的UTB控制(式32),可以同时恢复水平稳定状态以及原先的身体直立姿态。并证明了针对最大可恢复范围内的扰动,本文的控制方法都可以同时恢复双足机器人的平衡状态和身体姿态。最后,通过4组仿真实验验证了本文方法的有效性和相比闭环控制的快速性。
结论:针对欠驱动双足机器人站立的扰动恢复问题,提出一种基于髋策略的bang-bang-bang控制方法。该方法可迅速同时恢复机器人的平衡状态及身体姿态。

关键词: 扰动恢复,  平衡控制,  双足机器人,  髋策略 
[1] Yu-shi Zhu, Can-jun Yang, Shi-jun Wu, Qing Li, Xiao-le Xu. A space-saving steering method for underwater gliders in lake monitoring[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 485-497.
[2] Wei Yang, Can-jun Yang, Ting Xu. Human hip joint center analysis for biomechanical design of a hip joint exoskeleton[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 792-802.
[3] Qiang Liu, Jia-chen Ma. Subspace-based identification of discrete time-delay system[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 566-575.
[4] Xiao-xin Fu, Yong-heng Jiang, De-xian Huang, Jing-chun Wang, Kai-sheng Huang. Intelligent computing budget allocation for on-road trajectory planning based on candidate curves[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 553-565.
[5] Feng-yu Zhou, Xian-feng Yuan, Yang Yang, Zhi-fei Jiang, Chen-lei Zhou. A high precision visual localization sensor and its working methodology for an indoor mobile robot[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 365-374.
[6] Qian-shan Li, Rong Xiong, Shoudong Huang, Yi-ming Huang. Building a dense surface map incrementally from semi-dense point cloud and RGB images[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 594-606.
[7] Yang Yi, Zhi-yun Lin. Stability and agility: biped running over varied and unknown terrain[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 283-292.
[8] Hüseyin Oktay Erkol, Hüseyin Demirel. A VHDL application for kinematic equation solutions of multi-degree-of-freedom systems[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1164-1173.
[9] Qian Bi, Can-jun Yang. Human-machine interaction force control: using a model-referenced adaptive impedance device to control an index finger exoskeleton[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(4): 275-283.
[10] Shuang-shuang Fan, Can-jun Yang, Shi-lin Peng, Kai-hu Li, Yu Xie, Shao-yong Zhang. Underwater glider design based on dynamic model analysis and prototype development[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(8): 583-599.
[11] Xin Ma, Ya Xu, Guo-qiang Sun, Li-xia Deng, Yi-bin Li. State-chain sequential feedback reinforcement learning for path planning of autonomous mobile robots[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 167-178.
[12] Hao-jie Zhang, Jian-wei Gong, Yan Jiang, Guang-ming Xiong, Hui-yan Chen. An iterative linear quadratic regulator based trajectory tracking controller for wheeled mobile robot[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(8): 593-600.
[13] Zheng-wei Zhang, Hong Zhang, Yi-bin Li. Biologically inspired collective construction with visual landmarks[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(5): 315-327.
[14] Shuang-quan Wen, Tie-jun Wu. Grasp evaluation and contact points planning for polyhedral objects using a ray-shooting algorithm[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(3): 218-231.
[15] Wen-fei WANG, Rong XIONG, Jian CHU. Map building for dynamic environments using grid vectors[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(7): 574-588.