Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (8): 792-802    DOI: 10.1631/FITEE.1500286
    
Human hip joint center analysis for biomechanical design of a hip joint exoskeleton
Wei Yang, Can-jun Yang, Ting Xu
State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  We propose a new method for the customized design of hip exoskeletons based on the optimization of the human-machine physical interface to improve user comfort. The approach is based on mechanisms designed to follow the natural trajectories of the human hip as the flexion angle varies during motion. The motions of the hip joint center with variation of the flexion angle were measured and the resulting trajectory was modeled. An exoskeleton mechanism capable to follow the hip center’s movement was designed to cover the full motion ranges of flexion and abduction angles, and was adopted in a lower extremity assistive exoskeleton. The resulting design can reduce human-machine interaction forces by 24.1% and 76.0% during hip flexion and abduction, respectively, leading to a more ergonomic and comfortable-to-wear exoskeleton system. The human-exoskeleton model was analyzed to further validate the decrease of the hip joint internal force during hip joint flexion or abduction by applying the resulting design.

Key wordsHip joint exoskeleton      Hip joint center      Compatible joint      Human-machine interaction force     
Received: 04 September 2015      Published: 05 August 2016
CLC:  TP242.6  
Cite this article:

Wei Yang, Can-jun Yang, Ting Xu. Human hip joint center analysis for biomechanical design of a hip joint exoskeleton. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 792-802.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500286     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I8/792


基于人体髋关节转动中心分析的髋关节外骨骼仿生设计

概要:为了改善外骨骼穿戴舒适性,本文提出了一种基于人机物理交互优化的外骨骼设计方法。该方法通过设计外骨骼髋关节,使其保证人体髋关节运动时外骨骼髋关节转动中心能跟随人体髋关节转动中心的运动轨迹。当人体髋关节运动时,通过实验测量和计算可以得到其转动中心轨迹。本文设计的外骨骼髋关节运动机构能在人体髋关节屈曲/伸展和外展/内收时,保证转动中心都能够包容人体髋关节转动中心运动范围。同时,所设计的外骨骼髋关节被应用到下肢步行康复训练外骨骼中。通过人机接触力实验可知,与传统设计外骨骼髋关节进行相比,本文设计的仿生髋关节外骨骼在髋关节屈曲/伸展和内收/外展时分别可以减小24.1%和76.0%的人机接触力。这一结果证明仿生设计髋关节外骨骼更具穿戴舒适性,更符合人机工程学的设计要求。最后,本文通过建立人机闭式链模型进一步分析了仿生设计对于人体髋关节内力的影响,并验证该设计能减少关节内力作用。

关键词: 髋关节外骨骼,  髋关节中心,  柔顺关节,  人机交互力 
[1] Qiang Liu, Jia-chen Ma. Subspace-based identification of discrete time-delay system[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 566-575.
[2] Xiao-xin Fu, Yong-heng Jiang, De-xian Huang, Jing-chun Wang, Kai-sheng Huang. Intelligent computing budget allocation for on-road trajectory planning based on candidate curves[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 553-565.
[3] Feng-yu Zhou, Xian-feng Yuan, Yang Yang, Zhi-fei Jiang, Chen-lei Zhou. A high precision visual localization sensor and its working methodology for an indoor mobile robot[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 365-374.
[4] Qian-shan Li, Rong Xiong, Shoudong Huang, Yi-ming Huang. Building a dense surface map incrementally from semi-dense point cloud and RGB images[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 594-606.
[5] Xin Ma, Ya Xu, Guo-qiang Sun, Li-xia Deng, Yi-bin Li. State-chain sequential feedback reinforcement learning for path planning of autonomous mobile robots[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 167-178.
[6] Hao-jie Zhang, Jian-wei Gong, Yan Jiang, Guang-ming Xiong, Hui-yan Chen. An iterative linear quadratic regulator based trajectory tracking controller for wheeled mobile robot[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(8): 593-600.
[7] Yuan-hui Zhang, Wei Wei, Dan Yu, Cong-wei Zhong. A tracking and predicting scheme for ping pong robot[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(2): 110-115.