Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2013, Vol. 14 Issue (10): 743-755    DOI: 10.1631/jzus.C1300040
    
A metamodeling approach for pattern specification and management
Liang Dou, Qiang Liu, Zong-yuan Yang
Department of Computer Science and Technology, East China Normal University, Shanghai 200241, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The formal specification of design patterns is central to pattern research and is the foundation of solving various pattern-related problems. In this paper, we propose a metamodeling approach for pattern specification, in which a pattern is modeled as a meta-level class and its participants are meta-level references. Instead of defining a new metamodel, we reuse the Unified Modeling Language (UML) metamodel and incorporate the concepts of Variable and Set into our approach, which are unavailable in the UML but essential for pattern specification. Our approach provides straightforward solutions for pattern-related problems, such as pattern instantiation, evolution, and implementation. By integrating the solutions into a single framework, we can construct a pattern management system, in which patterns can be instantiated, evolved, and implemented in a correct and manageable way.

Key wordsDesign patterns      Metamodeling      Pattern management system      Kermeta      Java modeling languages     
Received: 05 February 2013      Published: 08 October 2013
CLC:  TP311  
Cite this article:

Liang Dou, Qiang Liu, Zong-yuan Yang. A metamodeling approach for pattern specification and management. Front. Inform. Technol. Electron. Eng., 2013, 14(10): 743-755.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1300040     OR     http://www.zjujournals.com/xueshu/fitee/Y2013/V14/I10/743


A metamodeling approach for pattern specification and management

The formal specification of design patterns is central to pattern research and is the foundation of solving various pattern-related problems. In this paper, we propose a metamodeling approach for pattern specification, in which a pattern is modeled as a meta-level class and its participants are meta-level references. Instead of defining a new metamodel, we reuse the Unified Modeling Language (UML) metamodel and incorporate the concepts of Variable and Set into our approach, which are unavailable in the UML but essential for pattern specification. Our approach provides straightforward solutions for pattern-related problems, such as pattern instantiation, evolution, and implementation. By integrating the solutions into a single framework, we can construct a pattern management system, in which patterns can be instantiated, evolved, and implemented in a correct and manageable way.

关键词: Design patterns,  Metamodeling,  Pattern management system,  Kermeta,  Java modeling languages 
[1] Deng Chen, Yan-duo Zhang, Wei Wei, Shi-xun Wang, Ru-bing Huang, Xiao-lin Li, Bin-bin Qu, Sheng Jiang. Efficient vulnerability detection based on an optimized rule-checking static analysis technique[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 332-345.
[2] Long-xiang Wang, Xiao-she Dong, Xing-jun Zhang, Yin-feng Wang, Tao Ju, Guo-fu Feng. TextGen: a realistic text data content generation method for modern storage system benchmarks[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 982-993.
[3] Shahab Pourtalebi, Imre Horváth. Information schema constructs for defining warehouse databases of genotypes and phenotypes of system manifestation features[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 862-884.
[4] Saif Ur Rehman Khan, Sai Peck Lee, Mohammad Dabbagh, Muhammad Tahir, Muzafar Khan, Muhammad Arif. RePizer: a framework for prioritization of software requirements[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 750-765.
[5] Hui-zong Li, Xue-gang Hu, Yao-jin Lin, Wei He, Jian-han Pan. A social tag clustering method based on common co-occurrence group similarity[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 122-134.
[6] Mohammad Alshayeb, Nasser Khashan, Sajjad Mahmood. A framework for an integrated unified modeling language[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 143-159.
[7] Dipayan DEV,Ripon PATGIRI. Dr. Hadoop: an infinite scalable metadata management for Hadoop—How the baby elephant becomes immortal[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(1): 15-31.
[8] Ignacio Marin, Francisco Ortin, German Pedrosa, Javier Rodriguez. Generating native user interfaces for multiple devices by means of model transformation[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(12): 995-1017.
[9] Hong Yin, Shu-qiang Yang, Xiao-qian Zhu, Shao-dong Ma, Lu-min Zhang. Symbolic representation based on trend features for knowledge discovery in long time series[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(9): 744-758.
[10] Ping Xie, Jian-zhong Huang, Er-wei Dai, Qiang Cao, Chang-sheng Xie. An efficient data layout scheme for better I/O balancing in RAID-6 storage systems[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 335-345.
[11] Xiao-xia Zhang, Qiang-hua Xiao, Bin Li, Sai Hu, Hui-jun Xiong, Bi-hai Zhao. Overlap maximum matching ratio (OMMR): a new measure to evaluate overlaps of essential modules[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 293-300.
[12] Yu-xiang Li, Yin-liang Zhao, Bin Liu, Shuo Ji. Optimization of thread partitioning parameters in speculative multithreading based on artificial immune algorithm[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(3): 205-216.
[13] László Lengyel, Hassan Charaf. Test-driven verification/validation of model transformations[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 85-97.
[14] Alireza Parvizi-Mosaed, Shahrouz Moaven, Jafar Habibi, Ghazaleh Beigi, Mahdieh Naser-Shariat. Towards a self-adaptive service-oriented methodology based on extended SOMA[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(1): 43-69.
[15] Zi-ying Dai, Xiao-guang Mao, Li-qian Chen, Yan Lei. Automatic recovery from resource exhaustion exceptions by collecting leaked resources[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(8): 622-635.