Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (6): 445-457    DOI: 10.1631/jzus.C1400025
    
An efficient measurement-driven sequential Monte Carlo multi-Bernoulli filter for multi-target filtering
Tong-yang Jiang, Mei-qin Liu, Xie Wang, Sen-lin Zhang
State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  We propose an efficient measurement-driven sequential Monte Carlo multi-Bernoulli (SMC-MB) filter for multi-target filtering in the presence of clutter and missing detection. The survival and birth measurements are distinguished from the original measurements using the gating technique. Then the survival measurements are used to update both survival and birth targets, and the birth measurements are used to update only the birth targets. Since most clutter measurements do not participate in the update step, the computing time is reduced significantly. Simulation results demonstrate that the proposed approach improves the real-time performance without degradation of filtering performance.

Key wordsMeasurement-driven      Gating technique      Sequential Monte Carlo      Multi-Bernoulli filter      Multi-target filtering     
Received: 25 January 2014      Published: 06 June 2014
CLC:  TP391  
Cite this article:

Tong-yang Jiang, Mei-qin Liu, Xie Wang, Sen-lin Zhang. An efficient measurement-driven sequential Monte Carlo multi-Bernoulli filter for multi-target filtering. Front. Inform. Technol. Electron. Eng., 2014, 15(6): 445-457.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1400025     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I6/445


一种用于多目标滤波的有效量测驱动序列蒙塔卡洛多伯努利滤波器

研究目的:序列蒙塔卡洛多伯努利滤波器的计算复杂度随量测个数线性增长,尤其在杂波环境下,量测中包含大量杂波量测,如果考虑所有的量测,将大大增加计算量,并且杂波量测也会降低滤波精度。因此,有必要从初始量测中区分可能的生存目标量测、新生目标量测和杂波量测,从而消除杂波量测,提高多目标滤波的实时性。
创新要点:利用跟踪门技术区分可能的生存目标量测、新生目标量测和杂波量测,之后用生存目标量测更新生存和新生目标,而新生目标量测只用来更新新生目标,从而在保证多目标滤波精度前提下,提高了多目标滤波的实时性。
方法提亮:首次利用跟踪门技术来区分可能的生存目标量测、新生目标量测和杂波量测,并提出了量测驱动方法用于序列蒙塔卡洛多伯努利滤波器。
重要结论:同初始的序列蒙塔卡洛多伯努利滤波器相比,本文所提方法在保证多目标滤波精度前提下,提高了多目标滤波的实时性。

关键词: 量测驱动,  序列蒙塔卡洛,  多伯努利滤波,  跟踪门技术,  多目标滤波 
[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[2] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. A systematic review of structured sparse learning[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 445-463.
[3] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. Attention-based encoder-decoder model for answer selection in question answering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 535-544.
[4] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[5] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. Corpus-based research on English word recognition rates in primary school and word selection strategy[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 362-372.
[6] . A quality requirements model and verification approach for system of systems based on description logic[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 346-361.
[7] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[8] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[9] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. An easy-to-use evaluation framework for benchmarking entity recognition and disambiguation systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 195-205.
[10] Li Weigang. First and Others credit-assignment schema for evaluating the academic contribution of coauthors[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 180-194.
[11] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. Challenges and opportunities: from big data to knowledge in AI 2.0[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 3-14.
[12] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. A swarm intelligence design based on a workshop of meta-synthetic engineering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 149-152.
[13] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. Towards human-like and transhuman perception in AI 2.0: a review[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 58-67.
[14] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. Cross-media analysis and reasoning: advances and directions[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 44-57.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 97-106.