Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2013, Vol. 14 Issue (2): 98-106    DOI: 10.1631/jzus.C1200223
    
c
Fu-qiang Zhou, Rong Zou, He Gao
School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  For a long time, trouble detection and maintenance of freight cars have been completed manually by inspectors. To realize the transition from manual to computer-based detection and maintenance, we focus on dust collector localization under complex conditions in the trouble of moving freight car detection system. Using mid-level features which are also named flexible edge arrangement (FEA) features, we first build the edge-based 2D model of the dust collectors, and then match target objects by a weighted Hausdorff distance method. The difference is that the constructed weighting function is generated by the FEA features other than specified subjectively, which can truly reflect the most basic property regions of the 3D object. Experimental results indicate that the proposed algorithm has better robustness to variable lighting, different viewing angle, and complex texture, and it shows a stronger adaptive performance. The localization correct rate of the target object is over 90%, which completely meets the need of practical applications.

Key wordsHausdorff distance      Weighting function      Trouble detection      Rail transportation     
Received: 16 July 2012      Published: 31 January 2013
CLC:  TP39  
  U279.3  
Cite this article:

Fu-qiang Zhou, Rong Zou, He Gao. c . Front. Inform. Technol. Electron. Eng., 2013, 14(2): 98-106.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1200223     OR     http://www.zjujournals.com/xueshu/fitee/Y2013/V14/I2/98


Dust collector localization in trouble of moving freight car detection system

For a long time, trouble detection and maintenance of freight cars have been completed manually by inspectors. To realize the transition from manual to computer-based detection and maintenance, we focus on dust collector localization under complex conditions in the trouble of moving freight car detection system. Using mid-level features which are also named flexible edge arrangement (FEA) features, we first build the edge-based 2D model of the dust collectors, and then match target objects by a weighted Hausdorff distance method. The difference is that the constructed weighting function is generated by the FEA features other than specified subjectively, which can truly reflect the most basic property regions of the 3D object. Experimental results indicate that the proposed algorithm has better robustness to variable lighting, different viewing angle, and complex texture, and it shows a stronger adaptive performance. The localization correct rate of the target object is over 90%, which completely meets the need of practical applications.

关键词: Hausdorff distance,  Weighting function,  Trouble detection,  Rail transportation 
[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[2] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. A systematic review of structured sparse learning[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 445-463.
[3] Mei-juan Jia, Hui-qiang Wang, Jun-yu Lin, Guang-sheng Feng, Hai-tao Yu. DGTM: a dynamic grouping based trust model for mobile peer-to-peer networks[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 559-569.
[4] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. Attention-based encoder-decoder model for answer selection in question answering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 535-544.
[5] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[6] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. Corpus-based research on English word recognition rates in primary school and word selection strategy[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 362-372.
[7] . A quality requirements model and verification approach for system of systems based on description logic[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 346-361.
[8] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[9] Shuo Wang, Jiao Zhang, Tao Huang, Jiang Liu, Yun-jie Liu, F. Richard Yu. FlowTrace: measuring round-trip time and tracing path in software-defined networking with low communication overhead[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 206-219.
[10] Li Weigang. First and Others credit-assignment schema for evaluating the academic contribution of coauthors[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 180-194.
[11] Dong-wei Xu, Yong-dong Wang, Li-min Jia, Yong Qin, Hong-hui Dong. Real-time road traffic state prediction based on ARIMA and Kalman filter[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 287-302.
[12] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[13] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. An easy-to-use evaluation framework for benchmarking entity recognition and disambiguation systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 195-205.
[14] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. Challenges and opportunities: from big data to knowledge in AI 2.0[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 3-14.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 97-106.