Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2012, Vol. 13 Issue (12): 881-890    DOI: 10.1631/jzus.C1200156
    
Adaptive online prediction method based on LS-SVR and its application in an electronic system
Yang-ming Guo, Cong-bao Ran, Xiao-lei Li, Jie-zhong Ma
School of Computer Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Health trend prediction has become an effective way to ensure the safe operation of highly reliable systems, and online prediction is always necessary in many real applications. To simultaneously obtain better or acceptable online prediction accuracy and shorter computing time, we propose a new adaptive online method based on least squares support vector regression (LS-SVR). This method adopts two approaches. One approach is that we delete certain support vectors by judging the linear correlation among the samples to increase the sparseness of the prediction model. This approach can control the loss of useful information in sample data, improve the generalization capability of the prediction model, and reduce the prediction time. The other approach is that we reduce the number of traditional LS-SVR parameters and establish a modified simple prediction model. This approach can reduce the calculation time in the process of adaptive online training. Simulation and a certain electric system application indicate preliminarily that the proposed method is an effective prediction approach for its good prediction accuracy and low computing time.

Key wordsAdaptive online prediction      Least squares support vector regression (LS-SVR)      Electronic system     
Received: 24 May 2012      Published: 09 December 2012
CLC:  TP391  
Cite this article:

Yang-ming Guo, Cong-bao Ran, Xiao-lei Li, Jie-zhong Ma. Adaptive online prediction method based on LS-SVR and its application in an electronic system. Front. Inform. Technol. Electron. Eng., 2012, 13(12): 881-890.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1200156     OR     http://www.zjujournals.com/xueshu/fitee/Y2012/V13/I12/881


Adaptive online prediction method based on LS-SVR and its application in an electronic system

Health trend prediction has become an effective way to ensure the safe operation of highly reliable systems, and online prediction is always necessary in many real applications. To simultaneously obtain better or acceptable online prediction accuracy and shorter computing time, we propose a new adaptive online method based on least squares support vector regression (LS-SVR). This method adopts two approaches. One approach is that we delete certain support vectors by judging the linear correlation among the samples to increase the sparseness of the prediction model. This approach can control the loss of useful information in sample data, improve the generalization capability of the prediction model, and reduce the prediction time. The other approach is that we reduce the number of traditional LS-SVR parameters and establish a modified simple prediction model. This approach can reduce the calculation time in the process of adaptive online training. Simulation and a certain electric system application indicate preliminarily that the proposed method is an effective prediction approach for its good prediction accuracy and low computing time.

关键词: Adaptive online prediction,  Least squares support vector regression (LS-SVR),  Electronic system 
[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[2] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. A systematic review of structured sparse learning[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 445-463.
[3] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. Attention-based encoder-decoder model for answer selection in question answering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 535-544.
[4] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[5] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. Corpus-based research on English word recognition rates in primary school and word selection strategy[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 362-372.
[6] . A quality requirements model and verification approach for system of systems based on description logic[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 346-361.
[7] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[8] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[9] Li Weigang. First and Others credit-assignment schema for evaluating the academic contribution of coauthors[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 180-194.
[10] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. An easy-to-use evaluation framework for benchmarking entity recognition and disambiguation systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 195-205.
[11] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. Towards human-like and transhuman perception in AI 2.0: a review[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 58-67.
[12] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. Cross-media analysis and reasoning: advances and directions[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 44-57.
[13] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. Challenges and opportunities: from big data to knowledge in AI 2.0[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 3-14.
[14] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. A swarm intelligence design based on a workshop of meta-synthetic engineering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 149-152.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 97-106.