Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2010, Vol. 11 Issue (11): 860-871    DOI: 10.1631/jzus.C1001005
Articles     
Multi-task multi-label multiple instance learning
Yi Shen, Jian-ping Fan
Department of Computer Science, University of North Carolina at Charlotte 28223, USA
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  For automatic object detection tasks, large amounts of training images are usually labeled to achieve more reliable training of the object classifiers; this is cost-expensive since it requires hiring professionals to label large-scale training images. When a large number of object classes come into view, the issue of obtaining a large enough amount of the labeled training images becomes more critical. There are three potential solutions to reduce the burden for image labeling: (1) allowing people to provide the object labels loosely at the image level rather than at the object level (e.g., loosely-tagged images without identifying the exact object locations in the images); (2) harnessing large-scale collaboratively-tagged images that are available on the Internet; and, (3) developing new machine learning algorithms that can directly leverage large-scale collaboratively- or loosely-tagged images for achieving more effective training of a large number of object classifiers. Based on these observations, a multi-task multi-label multiple instance learning (MTML-MIL) algorithm is developed in this paper by leveraging both inter-object correlations and large-scale loosely-labeled images for object classifier training. By seamlessly integrating multi-task learning, multi-label learning, and multiple instance learning, our MTML-MIL algorithm can achieve more accurate training of a large number of inter-related object classifiers (where an object network is constructed for determining the inter-related learning tasks directly in the feature space rather than in the label space). Our experimental results have shown that our MTML-MIL algorithm can achieve higher detection accuracy rates for automatic object detection.

Key wordsObject network      Loosely tagged images      Multi-task learning      Multi-label learning      Multiple instance learning     
Received: 14 September 2010      Published: 04 November 2010
CLC:  TP391.4  
Cite this article:

Yi Shen, Jian-ping Fan. Multi-task multi-label multiple instance learning. Front. Inform. Technol. Electron. Eng., 2010, 11(11): 860-871.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1001005     OR     http://www.zjujournals.com/xueshu/fitee/Y2010/V11/I11/860

[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. Attention-based encoder-decoder model for answer selection in question answering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 535-544.
[2] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[3] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 97-106.
[4] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. Challenges and opportunities: from big data to knowledge in AI 2.0[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 3-14.
[5] M. F. Kazemi, M. A. Pourmina, A. H. Mazinan. Level-direction decomposition analysis with a focus on image watermarking framework[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1199-1217.
[6] Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. Two-level hierarchical feature learning for image classification[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 897-906.
[7] Jia-yin Song, Wen-long Song, Jian-ping Huang, Liang-kuan Zhu. Segmentation and focus-point location based on boundary analysis in forest canopy hemispherical photography[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 741-749.
[8] Gao-li Sang, Hu Chen, Ge Huang, Qi-jun Zhao. Unseen head pose prediction using dense multivariate label distribution[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 516-526.
[9] Xi-chuan Zhou, Fang Tang, Qin Li, Sheng-dong Hu, Guo-jun Li, Yun-jian Jia, Xin-ke Li, Yu-jie Feng. Global influenza surveillance with Laplacian multidimensional scaling[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 413-421.
[10] Chu-hua Huang, Dong-ming Lu, Chang-yu Diao. A multiscale-contour-based interpolation framework for generating a time-varying quasi-dense point cloud sequence[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 422-434.
[11] Xiao-hu Ma, Meng Yang, Zhao Zhang. Local uncorrelated local discriminant embedding for face recognition[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 212-223.
[12] Fu-xiang Lu, Jun Huang. Beyond bag of latent topics: spatial pyramid matching for scene category recognition[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 817-828.
[13] Yu Liu, Bo Zhu. Deformable image registration with geometric changes[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(10): 829-837.
[14] Zheng-wei Huang, Wen-tao Xue, Qi-rong Mao. Speech emotion recognition with unsupervised feature learning[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 358-366.
[15] Xun Liu, Yin Zhang, San-yuan Zhang, Ying Wang, Zhong-yan Liang, Xiu-zi Ye. Detection of engineering vehicles in high-resolution monitoring images[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 346-357.