Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2011, Vol. 12 Issue (3): 213-220    DOI: 10.1631/jzus.C1000080
    
Monitoring continuous k-nearest neighbor queries in the hybrid wireless network
Young-Mo Kwon, Harim Jung, Yon Dohn Chung*
Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea
Download:   PDF(222KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In a mobile/pervasive computing environment, one of the most important goals of monitoring continuous spatial queries is to reduce communication cost for location-updates. Existing work uses many cellular wireless connections, which would easily become the performance bottleneck of the overall system. This paper introduces a novel continuous kNN query monitoring method to reduce communication cost in the hybrid wireless network, where the moving objects in the wireless broadcasting system construct the ad-hoc network. Simulation results prove the efficiency of the proposed method, which leverages the wireless broadcasting channel as well as the WiFi link to alleviate the burden on the cellular uplink communication cost.

Key wordsContinuous kNN query monitoring      Ad-hoc networks      Wireless broadcasting systems     
Received: 01 April 2010      Published: 09 March 2011
CLC:  TP393  
Cite this article:

Young-Mo Kwon, Harim Jung, Yon Dohn Chung. Monitoring continuous k-nearest neighbor queries in the hybrid wireless network. Front. Inform. Technol. Electron. Eng., 2011, 12(3): 213-220.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1000080     OR     http://www.zjujournals.com/xueshu/fitee/Y2011/V12/I3/213


Monitoring continuous k-nearest neighbor queries in the hybrid wireless network

In a mobile/pervasive computing environment, one of the most important goals of monitoring continuous spatial queries is to reduce communication cost for location-updates. Existing work uses many cellular wireless connections, which would easily become the performance bottleneck of the overall system. This paper introduces a novel continuous kNN query monitoring method to reduce communication cost in the hybrid wireless network, where the moving objects in the wireless broadcasting system construct the ad-hoc network. Simulation results prove the efficiency of the proposed method, which leverages the wireless broadcasting channel as well as the WiFi link to alleviate the burden on the cellular uplink communication cost.

关键词: Continuous kNN query monitoring,  Ad-hoc networks,  Wireless broadcasting systems 
[1] Mei-juan Jia, Hui-qiang Wang, Jun-yu Lin, Guang-sheng Feng, Hai-tao Yu. DGTM: a dynamic grouping based trust model for mobile peer-to-peer networks[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 559-569.
[2] Shuo Wang, Jiao Zhang, Tao Huang, Jiang Liu, Yun-jie Liu, F. Richard Yu. FlowTrace: measuring round-trip time and tracing path in software-defined networking with low communication overhead[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 206-219.
[3] Dong-wei Xu, Yong-dong Wang, Li-min Jia, Yong Qin, Hong-hui Dong. Real-time road traffic state prediction based on ARIMA and Kalman filter[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 287-302.
[4] Da-fang Zhang, Dan Chen, Yan-biao Li, Kun Xie, Tong Shen. A splitting-after-merging approach to multi-FIB compression and fast refactoring in virtual routers[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1266-1274.
[5] Reza Sookhtsaraei, Javad Artin, Ali Ghorbani, Ahmad Faraahi, Hadi Adineh. A locality-based replication manager for data cloud[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1275-1286.
[6] Jun-feng Xie, Ren-chao Xie, Tao Huang, Jiang Liu, F. Richard Yu, Yun-jie Liu. Caching resource sharing in radio access networks: a game theoretic approach[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1253-1265.
[7] Gui-lin CAI, Bao-sheng WANG, Wei HU, Tian-zuo WANG. Moving target defense: state of the art and characteristics[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1122-1153.
[8] Guang-jia Song, Zhen-zhou Ji. Anonymous-address-resolution model[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1044-1055.
[9] Adel Khosravi, Yousef Seifi Kavian. Autonomous fault-diagnosis and decision-making algorithm for determining faulty nodes in distributed wireless networks[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 885-896.
[10] Vignesh Renganathan Raja, Chung-Horng Lung, Abhishek Pandey, Guo-ming Wei, Anand Srinivasan. A subtree-based approach to failure detection and protection for multicast in SDN[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 682-700.
[11] Huan-zhao Wang, Peng Zhang, Lei Xiong, Xin Liu, Cheng-chen Hu. A secure and high-performance multi-controller architecture for software-defined networking[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 634-646.
[12] Shui-qing Gong, Jing Chen , Qiao-yan Kang, Qing-wei Meng, Qing-chao Zhu , Si-yi Zhao. An efficient and coordinated mapping algorithm in virtualized SDN networks[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 701-716.
[13] Bo Liu, Ming Chen, Bo Xu, Hui Hu, Chao Hu, Qing-yun Zuo, Chang-you Xing. An OpenFlow-based performance-oriented multipath forwarding scheme in datacenters[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 647-660.
[14] Peng Xiao, Zhi-yang Li, Song Guo, Heng Qi, Wen-yu Qu, Hai-sheng Yu. A K self-adaptive SDN controller placement for wide area networks[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 620-633.
[15] Mingjie Feng, Shiwen Mao, Tao Jiang. Enhancing the performance of future wireless networks with software-defined networking[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 606-619.