Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2010, Vol. 11 Issue (7): 525-537    DOI: 10.1631/jzus.C0910453
    
Multiple hypergraph ranking for video concept detection
Ya-hong Han, Jian Shao*, Fei Wu, Bao-gang Wei
Department of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This paper tackles the problem of video concept detection using the multi-modality fusion method. Motivated by multi-view learning algorithms, multi-modality features of videos can be represented by multiple graphs. And the graph-based semi-supervised learning methods can be extended to multiple graphs to predict the semantic labels for unlabeled video data. However, traditional graphs represent only homogeneous pairwise linking relations, and therefore the high-order correlations inherent in videos, such as high-order visual similarities, are ignored. In this paper we represent heterogeneous features by multiple hypergraphs and then the high-order correlated samples can be associated with hyperedges. Furthermore, the multi-hypergraph ranking (MHR) algorithm is proposed by defining Markov random walk on each hypergraph and then forming the mixture Markov chains so as to perform transductive learning in multiple hypergraphs. In experiments on the TRECVID dataset, a triple-hypergraph consisting of visual, textual features and multiple labeled tags is constructed to predict concept labels for unlabeled video shots by the MHR framework. Experimental results show that our approach is effective.

Key wordsMultiple hypergraph ranking      Video concept detection      Multi-view learning      Multiple labeled tags      Clustering     
Received: 25 July 2009      Published: 06 July 2010
CLC:  TP391  
Fund:  Project  supported  by  the  National  Natural  Science  Foundation  of China  (Nos.  60603096  and  60673088),  the  National  High-Tech  Re-
search  and  Development  Program  (863)  of  China  (No.  2006AA010107),  and  the  Program  for  Changjiang  Scholars  and  Innovative  Re-search Team in University of China (No. IRT0652)
Cite this article:

Ya-hong Han, Jian Shao, Fei Wu, Bao-gang Wei. Multiple hypergraph ranking for video concept detection. Front. Inform. Technol. Electron. Eng., 2010, 11(7): 525-537.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C0910453     OR     http://www.zjujournals.com/xueshu/fitee/Y2010/V11/I7/525


Multiple hypergraph ranking for video concept detection

This paper tackles the problem of video concept detection using the multi-modality fusion method. Motivated by
multi-view learning algorithms, multi-modality features of videos can be represented by multiple graphs. And the graph-based
semi-supervised learning methods can be extended to multiple graphs to predict the semantic labels for unlabeled video data.
However,  traditional  graphs  represent  only  homogeneous  pairwise  linking  relations,  and  therefore  the  high-order  correlations
inherent in videos, such as high-order visual similarities, are ignored. In this paper we represent heterogeneous features by multiple
hypergraphs and then the high-order correlated samples can be associated with hyperedges. Furthermore, the multi-hypergraph
ranking (MHR) algorithm is proposed by defining Markov random walk on each hypergraph and then forming the mixture Markov
chains  so  as  to  perform  transductive  learning  in  multiple  hypergraphs.  In  experiments  on  the  TRECVID  dataset,  a  triple-
hypergraph consisting of visual, textual features and multiple labeled tags is constructed to predict concept labels for unlabeled
video shots by the MHR framework. Experimental results show that our approach is effective.

关键词: Multiple hypergraph ranking,  Video concept detection,  Multi-view learning,  Multiple labeled tags,  Clustering 
[1] Rabia IRFAN , Sharifullah KHAN, Kashif RAJPOOT, Ali Mustafa QAMAR. TIE algorithm: a layer over clustering-based taxonomy generation for handling evolving data[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(6): 763-782.
[2] Qin ZHANG, Guo-qiang ZHONG , Jun-yu DONG. An anchor-based spectral clustering method[J]. Front. Inform. Technol. Electron. Eng., 2018, 19(11): 1385-1396.
[3] A Ram CHOI, Sung Min KIM, Mee Young SUNG. Controlling the contact levels of details for fast and precise haptic collision detection[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(8): 1117-1130.
[4] Ke-shi GE, Hua-you SU, Dong-sheng LI, Xi-cheng LU. Efficient parallel implementation of a density peaks clustering algorithm on graphics processing unit[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(7): 915-927.
[5] Erfan Shaghaghi, Mohammad Reza Jabbarpour, Rafidah Md Noor, Hwasoo Yeo, Jason J. Jung. Adaptive green traffic signal controlling using vehicular communication[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 373-393.
[6] Guang-hui Song, Xiao-gang Jin, Gen-lang Chen, Yan Nie. Two-level hierarchical feature learning for image classification[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 897-906.
[7] Hui-zong Li, Xue-gang Hu, Yao-jin Lin, Wei He, Jian-han Pan. A social tag clustering method based on common co-occurrence group similarity[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 122-134.
[8] Shi-jin Ren, Yin Liang, Xiang-jun Zhao, Mao-yun Yang. A novel multimode process monitoring method integrating LDRSKM with Bayesian inference[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(8): 617-633.
[9] Meng-ni Zhang, Can Wang, Jia-jun Bu, Zhi Yu, Yu Zhou, Chun Chen. A sampling method based on URL clustering for fast web accessibility evaluation[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(6): 449-456.
[10] Jia-geng Feng, Jun Xiao. View-invariant human action recognition via robust locally adaptive multi-view learning[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(11): 917-929.
[11] Xian Zang, Felipe P. Vista Iv, Kil To Chong. Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 551-563.
[12] Xin-zheng Xu, Shi-fei Ding, Zhong-zhi Shi, Hong Zhu. Optimizing radial basis function neural network based on rough sets and affinity propagation clustering algorithm[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(2): 131-138.
[13] Jing Fan, Hai-feng Ji, Xin-xin Guan, Ying Tang. A GPU-based multi-resolution algorithm for simulation of seed dispersal[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(11): 816-827.
[14] Suiang-Shyan Lee, Ja-Chen Lin. An accelerated K-means clustering algorithm using selection and erasure rules[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(10): 761-768.
[15] Zhen-gong Cai, Xiao-hu Yang, Xin-yu Wang, Aleksander J. Kavs. A fuzzy formal concept analysis based approach for business component identification[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(9): 707-720.