基于鲁棒局部自适应多视角学习的视点无关人体行为识别
目的:基于视觉的人体行为识别是一个非常活跃的研究领域。它在智能监控、感知接口和基于内容的视频检索等领域具有广泛的应用前景。然而,一些现实应用场景仍然阻碍行为识别技术的发展,比如现实场景中的动作往往是从任意角度拍摄的。因此与视点无关的行为识别显得十分重要。大量研究者开始致力于行为识别的视点无关性。本文提出一种基于多视角学习的视点无关人体行为识别方法。
创新点:针对现有多视角学习算法在构建近邻图时缺乏数据自适应性的问题,本文提出一种自适应多视角学习算法。此外,还提出一种迭代优化求解方法对所构建的目标函数进行优化求解。
方法:对于单个视角下的所有样本特征数据,构建一个该视角下的L1图。在获得数据的稀疏图结构后,对于单视角下的数据,希望学习一种最优的降维方法,在对原始数据进行降维的同时,最大程度地保持数据内在的局部结构信息;对于不同的视角,取一个非负的权重向量来衡量不同视角的重要程度。对于全部的视角可以统一起来得到目标函数。最后利用迭代优化求解,用支持向量机(SVM)分类。
结论:将本文所提算法应用到视点无关的行为识别中,实验结果表明:该算法能够自适应地选择近邻数与不同特征的权重;与其他几种对比算法相比,本文所提算法的分类准确率更高。
关键词:
视点无关,
行为识别,
多视角学习:L1范数