Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (2): 119-134    DOI: 10.1631/FITEE.1400174
    
Thermal-aware relocation of servers in green data centers
Muhammad Tayyab Chaudhry, T. C. Ling, S. A. Hussain, Xin-zhu Lu
Department of Computer System & Technology, Faculty of Computer Science & Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia; Department of Computer Science, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Rise in inlet air temperature increases the corresponding outlet air temperature from the server. As an added effect of rise in inlet air temperature, some active servers may start exhaling intensely hot air to form a hotspot. Increase in hot air temperature and occasional hotspots are an added burden on the cooling mechanism and result in energy wastage in data centers. The increase in inlet air temperature may also result in failure of server hardware. Identifying and comparing the thermal sensitivity to inlet air temperature for various servers helps in the thermal-aware arrangement and location switching of servers to minimize the cooling energy wastage. The peak outlet temperature among the relocated servers can be lowered and even be homogenized to reduce the cooling load and chances of hotspots. Based upon mutual comparison of inlet temperature sensitivity of heterogeneous servers, this paper presents a proactive approach for thermal-aware relocation of data center servers. The experimental results show that each relocation operation has a cooling energy saving of as much as 2.1 kW·h and lowers the chances of hotspots by over 77%. Thus, the thermal-aware relocation of servers helps in the establishment of green data centers.

Key wordsServers      Green data center      Thermal-aware      Relocation     
Received: 13 May 2014      Published: 29 January 2015
CLC:  TP393  
  TK12  
Cite this article:

Muhammad Tayyab Chaudhry, T. C. Ling, S. A. Hussain, Xin-zhu Lu. Thermal-aware relocation of servers in green data centers. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 119-134.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1400174     OR     http://www.zjujournals.com/xueshu/fitee/Y2015/V16/I2/119


绿色数据中心环境下服务器热感知再定位

目的:数据中心服务器入风口温度升高将导致出风口温度随之升高,同时某些正在运作的服务器在高温环境下排放气体,可能会导致热点或硬件损坏。高出风口和热点造成制冷机制的负担。因此服务器可以被用于入风口温度灵敏度分析,且导致热点的位于高入风口区域的服务器可以被重新定位。
创新:预测出风口温度作为入风口温度的参考。根据预测的出风口温度重新定位服务器,从而降低最大出风口温度并节省用于制冷的能量消耗。
方法:根据能量守恒原则,提出服务器再定位算法(算法1),用于测试一组异构服务器。讨论不同测试组别下异构服务器再定位前后出入风口温度的时间响应以及CPU使用率(图2-28)。
结论:所提热感知再定位方法应用于数据服务中心服务器可实现节能2.1 kW˙h。再定位之后的服务器出风口温度同构化程度更高。对于每对再定位服务器,可以减少77%热点产生可能性。

关键词: 服务器,  绿色数据中心,  热感知,  再定位 
[1] Mei-juan Jia, Hui-qiang Wang, Jun-yu Lin, Guang-sheng Feng, Hai-tao Yu. DGTM: a dynamic grouping based trust model for mobile peer-to-peer networks[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 559-569.
[2] Dong-wei Xu, Yong-dong Wang, Li-min Jia, Yong Qin, Hong-hui Dong. Real-time road traffic state prediction based on ARIMA and Kalman filter[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 287-302.
[3] Shuo Wang, Jiao Zhang, Tao Huang, Jiang Liu, Yun-jie Liu, F. Richard Yu. FlowTrace: measuring round-trip time and tracing path in software-defined networking with low communication overhead[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 206-219.
[4] Da-fang Zhang, Dan Chen, Yan-biao Li, Kun Xie, Tong Shen. A splitting-after-merging approach to multi-FIB compression and fast refactoring in virtual routers[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1266-1274.
[5] Reza Sookhtsaraei, Javad Artin, Ali Ghorbani, Ahmad Faraahi, Hadi Adineh. A locality-based replication manager for data cloud[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1275-1286.
[6] Jun-feng Xie, Ren-chao Xie, Tao Huang, Jiang Liu, F. Richard Yu, Yun-jie Liu. Caching resource sharing in radio access networks: a game theoretic approach[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1253-1265.
[7] Gui-lin CAI, Bao-sheng WANG, Wei HU, Tian-zuo WANG. Moving target defense: state of the art and characteristics[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1122-1153.
[8] Guang-jia Song, Zhen-zhou Ji. Anonymous-address-resolution model[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1044-1055.
[9] Adel Khosravi, Yousef Seifi Kavian. Autonomous fault-diagnosis and decision-making algorithm for determining faulty nodes in distributed wireless networks[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 885-896.
[10] Shui-qing Gong, Jing Chen , Qiao-yan Kang, Qing-wei Meng, Qing-chao Zhu , Si-yi Zhao. An efficient and coordinated mapping algorithm in virtualized SDN networks[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 701-716.
[11] Bo Liu, Ming Chen, Bo Xu, Hui Hu, Chao Hu, Qing-yun Zuo, Chang-you Xing. An OpenFlow-based performance-oriented multipath forwarding scheme in datacenters[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 647-660.
[12] Mingjie Feng, Shiwen Mao, Tao Jiang. Enhancing the performance of future wireless networks with software-defined networking[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 606-619.
[13] Gang Xiong, Yu-xiang Hu, Le Tian, Ju-long Lan, Jun-fei Li, Qiao Zhou. A virtual service placement approach based on improved quantum genetic algorithm[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 661-671.
[14] En-zhong Yang, Lin-kai Zhang, Zhen Yao, Jian Yang. A video conferencing system based on SDN-enabled SVC multicast[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 672-681.
[15] Vignesh Renganathan Raja, Chung-Horng Lung, Abhishek Pandey, Guo-ming Wei, Anand Srinivasan. A subtree-based approach to failure detection and protection for multicast in SDN[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 682-700.