Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (1): 12-27    DOI: 10.1631/FITEE.1400141
    
An image-based approach to the reconstruction of ancient architectures by extracting and arranging 3D spatial components
Divya Udayan J, HyungSeok Kim, Jee-In Kim
Internet and Multimedia Engineering, Konkuk University, Seoul 143-701, Korea; Department of Advanced Technology Fusion, Konkuk University, Seoul 143-701, Korea
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The objective of this research is the rapid reconstruction of ancient buildings of historical importance using a single image. The key idea of our approach is to reduce the infinite solutions that might otherwise arise when recovering a 3D geometry from 2D photographs. The main outcome of our research shows that the proposed methodology can be used to reconstruct ancient monuments for use as proxies for digital effects in applications such as tourism, games, and entertainment, which do not require very accurate modeling. In this article, we consider the reconstruction of ancient Mughal architecture including the Taj Mahal. We propose a modeling pipeline that makes an easy reconstruction possible using a single photograph taken from a single view, without the need to create complex point clouds from multiple images or the use of laser scanners. First, an initial model is automatically reconstructed using locally fitted planar primitives along with their boundary polygons and the adjacency relation among parts of the polygons. This approach is faster and more accurate than creating a model from scratch because the initial reconstruction phase provides a set of structural information together with the adjacency relation, which makes it possible to estimate the approximate depth of the entire structural monument. Next, we use manual extrapolation and editing techniques with modeling software to assemble and adjust different 3D components of the model. Thus, this research opens up the opportunity for the present generation to experience remote sites of architectural and cultural importance through virtual worlds and real-time mobile applications. Variations of a recreated 3D monument to represent an amalgam of various cultures are targeted for future work.

Key wordsDigital reconstruction      3D virtual world      3D spatial components      Vision and scene understanding     
Received: 20 April 2014      Published: 23 December 2014
CLC:  TP391.7  
Cite this article:

Divya Udayan J, HyungSeok Kim, Jee-In Kim. An image-based approach to the reconstruction of ancient architectures by extracting and arranging 3D spatial components. Front. Inform. Technol. Electron. Eng., 2015, 16(1): 12-27.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1400141     OR     http://www.zjujournals.com/xueshu/fitee/Y2015/V16/I1/12


基于3D空间组件提取和排列的古建筑重建图像方法

目的:利用单一图像重建古建筑,简化从2D照片恢复3D几何结构方法中无穷解的情况。该方法可以应用于观光、游戏、娱乐业中的古迹恢复。
创新:简化从2D照片恢复3D几何结构过程中无穷解的情况。对特定建筑风格生成的组件库可以应用于相同风格的其它古建筑的重建。
方法:本文主要以泰姬陵为例分析。首先,沿边界多面体和多面体之间的邻近关系利用合适的局部平面基元自动重建初始模型。然后,利用建模软件人工推断装配并调整模型3D组件获取最终重建模型。以Mughal风格的三个著名古建筑为例,测试基于前视图的模型重建(图10-12)。
结论:对图像组件的分层分析有助简化从2D照片恢复3D几何结构过程中无穷解的情况。对特定建筑风格生成的组件库可以应用于相同风格的其它古建筑的重建。对三个Mughal风格的三个古建筑进行模型重建,结果表明所提方法的有效性。

关键词: 数字重建,  3D虚拟世界,  3D空间组件,  视觉场景理解 
[1] Yan-hong Liu, Juan Cao, Zhong-gui Chen, Xiao-ming Zeng. Ray-triangular Bézier patch intersection using hybrid clipping algorith[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1018-1030.
[2] Hao XIE,Ruo-feng TONG. Image meshing via hierarchical optimization[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(1): 32-40.
[3] Xiao Liu, Jia-min Liu, An-xi Cao, Zhuang-le Yao. HAPE3D—a new constructive algorithm for the 3D irregular packing problem[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 380-390.
[4] Xiao-juan Duan, Guo-zhao Wang. Degree elevation of unified and extended spline curves[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1098-1105.
[5] Yong-wei Miao, Fei-xia Hu, Min-yan Chen, Zhen Liu, Hua-hao Shou. Visual salience guided feature-aware shape simplification[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 744-753.
[6] Fei-wei Qin, Lu-ye Li, Shu-ming Gao, Xiao-ling Yang, Xiang Chen. A deep learning approach to the classification of 3D CAD models[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(2): 91-106.
[7] Lie-fu Ai, Jun-qing Yu, Yun-feng He, Tao Guan. High-dimensional indexing technologies for large scale content-based image retrieval: a review[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(7): 505-520.
[8] Xiao-hong Tan, Rui-min Shen, Yan Wang. Personalized course generation and evolution based on genetic algorithms[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(12): 909-917.
[9] Shi-yan Wang, Hui-min Yu. Convex relaxation for a 3D spatiotemporal segmentation model using the primal-dual method[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(6): 428-439.
[10] Juan Cao, Guo-zhao Wang. Non-uniform B-spline curves with multiple shape parameters[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(10): 800-808.
[11] Yu-lei Geng, Jin Wang, Guo-dong Lu, Zheng Liu, Gang Chen. Sketch based garment modeling on an arbitrary view of a 3D virtual human model[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(3): 195-203.
[12] Chun-luan Zhou, Jun Xiao. Cartoon capture by key-frame based contour tracking[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(1): 36-43.
[13] Jia Li, Han-nan Yu, Yong-hong Tian, Tie-jun Huang, Wen Gao. Salient object extraction for user-targeted video content association[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(11): 850-859.
[14] Wan-qiang Shen, Guo-zhao Wang. Triangular domain extension of linear Bernstein-like trigonometric polynomial basis[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(5): 356-364.
[15] Qian-qian Hu, Guo-jin Wang. Representing conics by low degree rational DP curves[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(4): 278-289.