UE样条曲线的升阶
针对UE样条悬而未决的升阶问题,给出UE样条的升阶方法,并揭示此方法的几何意义。引入一种新的样条基函数-双阶UE样条基函数。在原始节点向量中逐个插入互异节点,将UE样条函数按区间逐段升阶,最终使UE样条在整个定义域内达到升阶效果,并给出这种升阶方法的几何意义。由于曲线在节点处的连续性保持不变,低阶的UE样条曲线可由高阶UE样条曲线表示。首先,引入一种新的样条基函数-双阶UE样条基函数。这种样条基在整个节点区间有两种阶数。其中,前一段节点区间的次数比后一段节点区间的次数高1次(图1)。然后,通过往节点向量中插入节点,双阶UE样条基的某特定区间次数升高1次,从而得到双阶UE样条在节点插入前后的基函数关系(图2)继而得到节点插入前后双阶UE样条函数控制顶点之间的关系。通过逐个插入互异节点,可使UE样条逐段升阶。最后,根据节点插入前后的新旧控制顶点关系,证明UE样条的升阶可以理解为其控制多边形的割角过程(图3、4)。通过在节点向量中逐个插入互异节点,解决了UE样条的升阶问题,并证明了UE样条的升阶可以解释为其控制多边形的割角过程。
关键词:
升阶,
UE样条,
双阶UE样条,
割角,
几何解释