Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (1): 41-54    DOI: 10.1631/FITEE.1500126
    
Extracting hand articulations from monocular depth images using curvature scale space descriptors
1Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China
2School of Software Technology, Dalian University of Technology, Dalian 116024, China
3Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
Extracting hand articulations from monocular depth images using curvature scale space descriptors
Shao-fan WANG1,?(),Chun LI1,De-hui KONG1,?(),Bao-cai YIN2,1,3
1Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China
2School of Software Technology, Dalian University of Technology, Dalian 116024, China
3Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
 全文: PDF(2840 KB)   HTML
摘要:

We propose a framework of hand articulation detection from a monocular depth image using curvature scale space (CSS) descriptors. We extract the hand contour from an input depth image, and obtain the fingertips and finger-valleys of the contour using the local extrema of a modified CSS map of the contour. Then we recover the undetected fingertips according to the local change of depths of points in the interior of the contour. Compared with traditional appearance-based approaches using either angle detectors or convex hull detectors, the modified CSS descriptor extracts the fingertips and finger-valleys more precisely since it is more robust to noisy or corrupted data; moreover, the local extrema of depths recover the fingertips of bending fingers well while traditional appearance-based approaches hardly work without matching models of hands. Experimental results show that our method captures the hand articulations more precisely compared with three state-of-the-art appearance-based approaches.

Abstract:

We propose a framework of hand articulation detection from a monocular depth image using curvature scale space (CSS) descriptors. We extract the hand contour from an input depth image, and obtain the fingertips and finger-valleys of the contour using the local extrema of a modified CSS map of the contour. Then we recover the undetected fingertips according to the local change of depths of points in the interior of the contour. Compared with traditional appearance-based approaches using either angle detectors or convex hull detectors, the modified CSS descriptor extracts the fingertips and finger-valleys more precisely since it is more robust to noisy or corrupted data; moreover, the local extrema of depths recover the fingertips of bending fingers well while traditional appearance-based approaches hardly work without matching models of hands. Experimental results show that our method captures the hand articulations more precisely compared with three state-of-the-art appearance-based approaches.

Key words: Curvature scale space (CSS)    Hand articulation    Convex hull    Hand contour
收稿日期: 2015-04-20 出版日期: 2016-01-05
CLC:  TP391  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
  
  
  
  
  
  
  
  
  
  
  
  
  
1 Abbasi S , Mokhtarian F , Kittler J . Curvature scale space image in shape similarity retrieval. Multimedia Syst. 1999, 7 (8): 467-476 doi: 10.1007/s005300050147
doi: 10.1007/s005300050147
2 Athitsos V , Sclaroff S . An appearance-based framework for 3D hand shape classification and camera viewpoint estimation. 2002, Proc. 5th IEEE Int. Conf. on Automatic Face and Gesture Recognition: p.40-45 doi: 10.1109/AFGR.2002.1004129
doi: 10.1109/AFGR.2002.1004129
3 Athitsos V , Sclaroff S . Estimating 3D hand pose from a cluttered image. 2003, Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition: p.432-439 doi: 10.1109/CVPR.2003.1211500
doi: 10.1109/CVPR.2003.1211500
4 Cerezo T, 3D hand and finger recognition using Kinect2012, Technical ReportUniversidad de Granada, Spain Available at http://frantracerkinectft.codeplex.com.
5 Chang WY , Chen CS , Jian YD . Visual tracking in high-dimensional state space by appearanceguided particle filtering. IEEE Trans. Image Process 2008, 17(7): 1054-1067 doi: 10.1109/TIP.2008.924283
doi: 10.1109/TIP.2008.924283 pmid: 18586623
6 de La Gorce M , Fleet DJ , Paragios N . Modelbased 3D hand pose estimation from monocular video. IEEE Trans. Patt. Anal. Mach. Intell. 2011, 33(9): 1793-1805 doi: 10.1109/TPAMI.2011.33
doi: 10.1109/TPAMI.2011.33 pmid: 21339527
7 Feng Z , Yang B , Chen Y . et al. . Features extraction from hand images based on new detection operators. Patt. Recog. 2011, 44(5): 1089-1105 doi: 10.1016/j.patcog.2010.08.007
doi: 10.1016/j.patcog.2010.08.007
8 Keskin C , K?ra? F , Kara YE . et al. . Real time hand pose estimation using depth sensors 2011, London In: Fossati, A., Gall, J., Grabner, H., et al. (Eds.), Consumer Depth Cameras for Computer Vision, Springer: p.119-137 doi: 10.1007/978-1-4471-4640-7_7
doi: 10.1007/978-1-4471-4640-7_7
9 Kirac F , Kara YE , Akarun L . Hierarchically constrained 3D hand pose estimation using regression forests from single frame depth data. Patt. Recog. Lett. 2014, 50(3): 415-422 doi: 10.1016/j.patrec.2013.09.003
doi: 10.1016/j.patrec.2013.09.003
10 Lee D , Lee S . Vision-based finger action recognition by angle detection and contour analysis. ETRI J. 2011, 33(3): 415-422 doi: 10.4218/etrij.11.0110.0313
doi: 10.4218/etrij.11.0110.0313
11 Ma Z , Wu E . Real-time and robust hand tracking with a single depth camera. Vis. Comput. 2014, 30(10): 1133-1144 doi: 10.1007/s00371-013-0894-1
doi: 10.1007/s00371-013-0894-1
12 Maisto M , Panella M , Liparulo L . et al. . An accurate algorithm for the identification of fingertips using an RGB-D camera. IEEE J. Emerg. Sel. Topics Circ. Syst. 2013, 3(2): 272-283 doi: 10.1109/JETCAS.2013.2256830
doi: 10.1109/JETCAS.2013.2256830
13 Morshidi M , Tjahjadi T . Gravity optimised particle filter for hand tracking. Patt. Recog. 2014, 47(1): 194-207 doi: 10.1016/j.patcog.2013.06.032
doi: 10.1016/j.patcog.2013.06.032
14 Nagarajan S , Subashini T , Ramalingam V . Vision based real time finger counter for hand gesture recognition. Int. J. Technol. 2012, 2(2): 1-5
15 Oikonomidis I , Kyriazis N , Argyros AA . Efficient model-based 3D tracking of hand articulations using Kinect. BMVC 2011, 1(2): 1-11
16 Qian C , Sun X , Wei Y , et al.. Realtime and robust hand tracking from depth. 2014, Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1106-1113 doi: 10.1109/CVPR.2014.145
doi: 10.1109/CVPR.2014.145
17 Ren Z , Yuan J , Zhang Z . Robust hand gesture recognition based on finger-earth movera€?s distance with a commodity depth camera. 2011, Proc. 19th ACM Int. Conf. on Multimedia, p.1093-1096 doi: 10.1145/2072298.2071946
doi: 10.1145/2072298.2071946
18 Rosales R , Athitsos V , Sigal L , et al.. 3D hand pose reconstruction using specialized mappings. 2001, Proc. 8th IEEE Int. Conf. on Computer Vision, p.378-385 doi: 10.1109/ICCV.2001.937543
doi: 10.1109/ICCV.2001.937543
19 Schlattmann M , Kahlesz F , Sarlette R , et al.. Markerless 4 gestures 6 DOF real-time visual tracking of the human hand with automatic initialization. Comput. Graph. Forum. 2007, 26(3): 467-476 doi: 10.1111/j.1467-8659.2007.01069.x
doi: 10.1111/j.1467-8659.2007.01069.x
20 Tomasi C, Petrov S, Sastry A . 3D tracking = classification + interpolation. 2003, Proc. 9th IEEE Int. Conf. on Computer Vision, p.1441-1448 doi: 10.1109/ICCV.2003.1238659
doi: 10.1109/ICCV.2003.1238659
[1] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. 基于注意机制编码解码模型的答案选择方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 535-544.
[2] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[3] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . 使用猫群算法优化线性天线阵列的最佳阵因子辐射方向图:电磁仿真验证[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 570-577.
[4] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. 结构化稀疏学习综述[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 445-463.
[5] . 一种基于描述逻辑的体系质量需求建模与验证方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 346-361.
[6] Ali Darvish Falehi, Ali Mosallanejad. 使用基于多目标粒子群算法多层自适应模糊推理系统晶闸管控制串联电容器补偿技术的互联多源电力系统动态稳定性增强器[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 394-409.
[7] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. 基于语料库的小学英语认识率及教材选词策略研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 362-372.
[8] Jun-hong Zhang, Yu Liu. 应用完备集合固有时间尺度分解和混合差分进化和粒子群算法优化的最小二乘支持向量机对柴油机进行故障诊断[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 272-286.
[9] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. 一种易用的实体识别消歧系统评测框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 195-205.
[10] Li Weigang. 用于评估共同作者学术贡献的第一和其他合作者信用分配模式[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 180-194.
[11] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. AI2.0时代的类人与超人感知:研究综述与趋势展望[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 58-67.
[12] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. 跨媒体分析与推理:研究进展与发展方向[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 44-57.
[13] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. 挑战与希望:AI2.0时代从大数据到知识[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3-14.
[14] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. 基于综合集成研讨厅的群体智能设计研究[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 149-152.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. 基于众包标签数据深度学习的命名实体消歧算法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 97-106.