Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (1): 32-40    DOI: 10.1631/FITEE.1500171
    
Image meshing via hierarchical optimization
Institute of Artificial Intelligence, Zhejiang University, Hangzhou 310027, China
Image meshing via hierarchical optimization
Hao XIE,Ruo-feng TONG()
Institute of Artificial Intelligence, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1027 KB)   HTML
摘要:

Vector graphic , as a kind of geometric representation of raster images, has many advantages, e.g., definition independence and editing facility. A popular way to convert raster images into vector graphics is {image meshing}, the aim of which is to find a mesh to represent an image as faithfully as possible. For traditional meshing algorithms, the crux of the problem resides mainly in the high non-linearity and non-smoothness of the objective, which makes it difficult to find a desirable optimal solution. To ameliorate this situation, we present a hierarchical optimization algorithm solving the problem from coarser levels to finer ones, providing initialization for each level with its coarser ascent. To further simplify the problem, the original non-convex problem is converted to a linear least squares one, and thus becomes convex, which makes the problem much easier to solve. A dictionary learning framework is used to combine geometry and topology elegantly. Then an alternating scheme is employed to solve both parts. Experiments show that our algorithm runs fast and achieves better results than existing ones for most images.

Abstract:

Vector graphic , as a kind of geometric representation of raster images, has many advantages, e.g., definition independence and editing facility. A popular way to convert raster images into vector graphics is {image meshing}, the aim of which is to find a mesh to represent an image as faithfully as possible. For traditional meshing algorithms, the crux of the problem resides mainly in the high non-linearity and non-smoothness of the objective, which makes it difficult to find a desirable optimal solution. To ameliorate this situation, we present a hierarchical optimization algorithm solving the problem from coarser levels to finer ones, providing initialization for each level with its coarser ascent. To further simplify the problem, the original non-convex problem is converted to a linear least squares one, and thus becomes convex, which makes the problem much easier to solve. A dictionary learning framework is used to combine geometry and topology elegantly. Then an alternating scheme is employed to solve both parts. Experiments show that our algorithm runs fast and achieves better results than existing ones for most images.

Key words: Image meshing    Hierarchical optimization    Convexification
收稿日期: 2015-05-27 出版日期: 2016-01-05
CLC:  TP391.7  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
游兆彤1*
孔亚广2
胡晓飞2
陈天钧2
  
1: HierarchyEstablishment
2: MeshInitialization
3: $i\Leftarrow N - 1$
4: while Level i ≥ 0 do
5: ????ObjectiveConvexification(i)
6: ????AlternatingOptimization(i)
7:????$i\Leftarrow i - 1$
8: end while
  
  
  
Image SR (%) PSNR (dB)
Adams(2011) Xieet al.(2014) Ours
Lena127.375928.860029.7244
229.826330.954431.3691
330.980131.991832.1422
Fruits125.926926.958927.7363
228.532729.442429.7518
329.962930.802430.5960
Flowe125.802826.971827.7477
227.921729.607129.9863
328.661530.800930.9495
Falcon127.319629.966630.4886
228.532331.972932.1160
328.867532.787732.7106
Car123.164524.647825.0299
225.694126.885727.2032
326.816327.949028.0324
Fish123.987325.230125.9045
226.629627.763628.1316
328.107429.216629.2648
Leaf126.806127.881628.6272
228.839529.984630.3554
329.592431.000831.1287
Swan124.482625.961426.7547
226.989028.378328.9821
328.365129.701930.0601
Frog127.440428.977629.8903
229.884831.058431.5725
330.879131.968932.2853
  
  
  
Image Resolution SR(%) Time(s)
Lena512×51212.03
23.66
36.23
Fruits512×48011.75
23.10
35.19
Flower400×30010.66
21.02
31.61
Falcon400×28010.59
20.86
31.33
Car400×30010.64
21.04
31.61
Fish320×40010.66
21.05
31.66
Leaf373×40010.83
21.36
32.20
Swan286×40010.60
20.95
31.48
Frog357×40010.90
21.44
  
  
1 Adams MD . A flexible content-adaptive meshgeneration strategy for image representation. IEEE Trans. Image Process. 2011, 20(9): 2414-2427 doi: 10.1109/TIP.2011.2128336
doi: 10.1109/TIP.2011.2128336 pmid: 21421439
2 Demaret L , Iske A . Advances in digital image compression by adaptive thinning. Ann. MCFA. 2004, 3: 105 -109
3 Demaret L , Dyn N , Iske A . Image compression by linear splines over adaptive triangulations. Signal Process. 2006, 86(7): 1604 -1616 doi: 10.1016/j.sigpro.2005.09.003
doi: 10.1016/j.sigpro.2005.09.003
4 Hu SM , Zhang FL , Wang M . et al. . PatchNet: a patch-based image representation for interactive librarydriven image editing. ACM Trans. Graph. 2013, 32(6): 196 doi: 10.1145/2508363.250838
doi: 10.1145/2508363.250838
5 Huynh-Thu Q , Ghanbari M . Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44 (13) : 800 -801 doi: 10.1049/el:20080522
doi: 10.1049/el:20080522
6 Lai YK , Hu SM , Martin RR . Automatic and topology-preserving gradient mesh generation for image vectorization. ACM Trans. Graph. 2009, 28 (3): 85 doi: 10.1145/1531326.1531391
doi: 10.1145/1531326.1531391
7 Lecot G , Levy B . Ardeco: automatic region detection and conversion. 2006 17th Eurographics Symp. on Rendering, p. 349: 360 doi: 10.2312/EGWR/EGSR06/349-360
doi: 10.2312/EGWR/EGSR06/349-360
8 Liao ZC , Hoppe H , Forsyth D . et al. . A subdivision-based representation for vector image editing. IEEE Trans. Vis. Comput. Graph. 2012, 18 (11): 1858-1867 doi: 10.1109/TVCG.2012.76
doi: 10.1109/TVCG.2012.76 pmid: 22392717
9 Liu DC , Nocedal J . On the limited memory BFGS method for large-scale optimization. Math. Program. 1989, 45 (3): 503-528 doi: 10.1007/BF01589116
doi: 10.1007/BF01589116
10 Sieger D , Botsch M . Design, implementation, and evaluation of the surface_mesh data structure. 2012, Proc. 20th Int. Meshing Roundtable: p.533-550 doi: 10.1007/978-3-642-24734-7_29
doi: 10.1007/978-3-642-24734-7_29
11 Sun J , Liang L , Wen F . et al. . Image vectorization using optimized gradient meshes. ACM Trans. Graph. 2007, 26 (3): 11 doi: 10.1145/1239451.1239462
doi: 10.1145/1239451.1239462
12 Swaminarayan S Prasad L . Rapid automated polygonal image decomposition. 2006 35th IEEE Applied Imagery and Pattern Recognition Workshop, p.28-33 doi: 10.1109/AIPR.2006.30
doi: 10.1109/AIPR.2006.30
13 Xia T , Liao BB , Yu YZ . Patch-based image vectorization with automatic curvilinear feature alignment. ACM Trans. Graph. 2009, 28 (5): 115 doi: 10.1145/1618452.1618461
doi: 10.1145/1618452.1618461
14 Xie H , Tong RF , Zhang Y . Image meshing via alternative optimization. J. Comput. Inform. Syst. 2014, 10 (19): 8209-8217 doi: 10.12733/jcis11723
doi: 10.12733/jcis11723
15 Xiong SY , Zhang JY , Zheng JM . et al. . Robust surface reconstruction via dictionary learning. ACM Trans. Graph. 2014, 33(6) doi: 10.1145/2661229.2661263
doi: 10.1145/2661229.2661263
16 Xu L , Lu CW , Xu Y . et al. . Image smoothing via L0 gradient minimization. ACM Trans. Graph. 2011, 30 (6): 174 doi: 10.1145/2024156.2024208
doi: 10.1145/2024156.2024208
[1] Yan-hong Liu, Juan Cao, Zhong-gui Chen, Xiao-ming Zeng. 射线与三角Bézier曲面交点的混合裁剪算法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1018-1030.
[2] Xiao Liu, Jia-min Liu, An-xi Cao, Zhuang-le Yao. 一种新型三维不规则排样构造算法HAPE3D[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 380-390.
[3] Divya Udayan J, HyungSeok Kim, Jee-In Kim. 基于3D空间组件提取和排列的古建筑重建图像方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(1): 12-27.
[4] Xiao-juan Duan, Guo-zhao Wang. UE样条曲线的升阶[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1098-1105.
[5] Yong-wei Miao, Fei-xia Hu, Min-yan Chen, Zhen Liu, Hua-hao Shou. 视觉显著性引导的特征敏感形状简化[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 744-753.
[6] Fei-wei Qin, Lu-ye Li, Shu-ming Gao, Xiao-ling Yang, Xiang Chen. 用于三维CAD模型分类的深度学习方法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(2): 91-106.
[7] Lie-fu Ai, Jun-qing Yu, Yun-feng He, Tao Guan. High-dimensional indexing technologies for large scale content-based image retrieval: a review[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(7): 505-520.
[8] Xiao-hong Tan, Rui-min Shen, Yan Wang. Personalized course generation and evolution based on genetic algorithms[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(12): 909-917.
[9] Shi-yan Wang, Hui-min Yu. Convex relaxation for a 3D spatiotemporal segmentation model using the primal-dual method[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(6): 428-439.
[10] Juan Cao, Guo-zhao Wang. Non-uniform B-spline curves with multiple shape parameters[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(10): 800-808.
[11] Yu-lei Geng, Jin Wang, Guo-dong Lu, Zheng Liu, Gang Chen. Sketch based garment modeling on an arbitrary view of a 3D virtual human model[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(3): 195-203.
[12] Chun-luan Zhou, Jun Xiao. Cartoon capture by key-frame based contour tracking[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(1): 36-43.
[13] Jia Li, Han-nan Yu, Yong-hong Tian, Tie-jun Huang, Wen Gao. [J]. Frontiers of Information Technology & Electronic Engineering, 2010, 11(11): 850-859.
[14] Wan-qiang Shen, Guo-zhao Wang. Triangular domain extension of linear Bernstein-like trigonometric polynomial basis[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(5): 356-364.
[15] Qian-qian Hu, Guo-jin Wang. Representing conics by low degree rational DP curves[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(4): 278-289.