Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (7): 579-593    DOI: 10.1631/FITEE.14a0230
    
基于髋策略的欠驱动双足机器人站立抗扰动恢复控制
Chao Li, Rong Xiong, Qiu-guo Zhu, Jun Wu, Ya-liang Wang, Yi-ming Huang
State Key Laboratory of Industrial Control Technology & Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
Push recovery for the standing under-actuated bipedal robot using the hip strategy
Chao Li, Rong Xiong, Qiu-guo Zhu, Jun Wu, Ya-liang Wang, Yi-ming Huang
State Key Laboratory of Industrial Control Technology & Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF 
摘要: 目的:稳定站立和姿态保持是双足机器人正常作业的前提,但各种不确定的外部扰动不可避免。机器人需要通过协调关节运动使其快速恢复到原先的稳定站立状态。
创新点:本文提出一种开环bang-bang-bang控制方法,根据扰动情况设计髋关节力矩曲线,可以同时恢复欠驱动双足机器人的平衡状态和身体姿态。与闭环控制相比,本方法恢复更为迅速。
方法:首先,将外力扰动情况分为3类:1)外力通过质心,扰动仅改变平衡状态不改变身体姿态;2)外力矩扰动,扰动仅改变身体姿态不改变平衡状态;3)外力不通过质心,扰动同时改变平衡状态和身体姿态(图2)。然后,针对不同扰动情况提出对应的3种开环bang-bang-bang控制方法以及对应的髋关节力矩曲线:1)针对扰动情况1的STB控制(式14),在恢复水平稳定状态的同时不改变原先的身体直立姿态;2)针对扰动情况2的ATB控制(式18),在恢复身体直立姿态的同时不改变水平稳定状态;3)针对扰动情况3的UTB控制(式32),可以同时恢复水平稳定状态以及原先的身体直立姿态。并证明了针对最大可恢复范围内的扰动,本文的控制方法都可以同时恢复双足机器人的平衡状态和身体姿态。最后,通过4组仿真实验验证了本文方法的有效性和相比闭环控制的快速性。
结论:针对欠驱动双足机器人站立的扰动恢复问题,提出一种基于髋策略的bang-bang-bang控制方法。该方法可迅速同时恢复机器人的平衡状态及身体姿态。
关键词: 扰动恢复平衡控制双足机器人髋策略    
Abstract: This paper presents a control algorithm for push recovery, which particularly focuses on the hip strategy when an external disturbance is applied on the body of a standing under-actuated biped. By analyzing a simplified dynamic model of a bipedal robot in the stance phase, it is found that horizontal stability can be maintained with a suitably controlled torque applied at the hip. However, errors in the angle or angular velocity of body posture may appear, due to the dynamic coupling of the translational and rotational motions. To solve this problem, different hip strategies are discussed for two cases when (1) external disturbance is applied on the center of mass (CoM) and (2) external torque is acting around the CoM, and a universal hip strategy is derived for most disturbances. Moreover, three torque primitives for the hip, depending on the type of disturbance, are designed to achieve translational and rotational balance recovery simultaneously. Compared with closed-loop control, the advantage of the open-loop methods of torque primitives lies in rapid response and reasonable performance. Finally, simulation studies of the push recovery of a bipedal robot are presented to demonstrate the effectiveness of the proposed methods.
Key words: Push recovery    Balance control    Bipedal robot    Hip strategy
收稿日期: 2014-07-30 出版日期: 2015-07-06
CLC:  TP242  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Chao Li
Rong Xiong
Qiu-guo Zhu
Jun Wu
Ya-liang Wang
Yi-ming Huang

引用本文:

Chao Li, Rong Xiong, Qiu-guo Zhu, Jun Wu, Ya-liang Wang, Yi-ming Huang. Push recovery for the standing under-actuated bipedal robot using the hip strategy. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 579-593.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.14a0230        http://www.zjujournals.com/xueshu/fitee/CN/Y2015/V16/I7/579

[1] Yu-shi Zhu, Can-jun Yang, Shi-jun Wu, Qing Li, Xiao-le Xu. 适用于湖水监测的水下滑翔机的空间高效转向方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 485-497.
[2] Wei Yang, Can-jun Yang, Ting Xu. 基于人体髋关节转动中心分析的髋关节外骨骼仿生设计[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 792-802.
[3] Qiang Liu, Jia-chen Ma. 基于子空间的离散时滞系统辨识[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 566-575.
[4] Xiao-xin Fu, Yong-heng Jiang, De-xian Huang, Jing-chun Wang, Kai-sheng Huang. 基于候选曲线的公路轨迹规划中的智能计算量分配[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 553-565.
[5] Feng-yu Zhou, Xian-feng Yuan, Yang Yang, Zhi-fei Jiang, Chen-lei Zhou. 一种室内移动机器人高精度视觉定位传感器及其工作原理[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 365-374.
[6] Qian-shan Li, Rong Xiong, Shoudong Huang, Yi-ming Huang. 一种利用半稠密点云及RGB图像构建稠密表面模型地图的方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 594-606.
[7] Yang Yi, Zhi-yun Lin. 稳定与灵活:基于欠驱动机器人在未知变化环境的奔跑运动控制[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 283-292.
[8] Hüseyin Oktay Erkol, Hüseyin Demirel. 多自由度系统运动学方程求解的VHDL应用[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1164-1173.
[9] Qian Bi, Can-jun Yang. 人机交互力控制:针对食指外骨骼控制的模型参考自适应阻抗控制策略[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(4): 275-283.
[10] Shuang-shuang Fan, Can-jun Yang, Shi-lin Peng, Kai-hu Li, Yu Xie, Shao-yong Zhang. Underwater glider design based on dynamic model analysis and prototype developmentv[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(8): 583-599.
[11] Xin Ma, Ya Xu, Guo-qiang Sun, Li-xia Deng, Yi-bin Li. State-chain sequential feedback reinforcement learning for path planning of autonomous mobile robots[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 167-178.
[12] Hao-jie Zhang, Jian-wei Gong, Yan Jiang, Guang-ming Xiong, Hui-yan Chen. An iterative linear quadratic regulator based trajectory tracking controller for wheeled mobile robot[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(8): 593-600.
[13] Zheng-wei Zhang, Hong Zhang, Yi-bin Li. Biologically inspired collective construction with visual landmarks[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(5): 315-327.
[14] Shuang-quan Wen, Tie-jun Wu. Grasp evaluation and contact points planning for polyhedral objects using a ray-shooting algorithm[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(3): 218-231.
[15] Wen-fei WANG, Rong XIONG, Jian CHU. Map building for dynamic environments using grid vectors[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(7): 574-588.